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This article reviews the current status of spin dynamics in semiconductors which has
achieved much progress in the recent years due to the fast growing field of semiconductor
spintronics. The primary focus is on the theoretical and experimental developments of spin
relaxation and dephasing in both spin precession in the time domain and spin diffusion
and transport in the spatial domain. A fully microscopic many-body investigation on spin
dynamics based on the kinetic spin Bloch equation approach is comprehensively reviewed.
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1. Introduction

Since the pioneeringworks by Lampel [1] and Parsons [2] and the following extensive experimental and theoreticalworks
at Ioffe Institute in St. Petersburg and Ecole Polytechnique in Paris in 1970s and early 1980s, a great understanding of spin
dynamics in semiconductors has been achieved. Some basic spin relaxation and dephasing mechanisms were also proposed
at that time. A nice review of these findings can be found in the book ‘‘Optical Orientation’’ [3].
Starting from the late 1990s, there was a big revival of research interest in the spin dynamics of semiconductors, jump-

started by some nice experimental work by Awschalom and co-workers [4,5]. An extensive number of experimental and
theoretical investigations have been carried out on all aspects of spin properties. Properties of spin relaxation and dephasing
in both the time domain (in the spatially uniform system) and the spatial domain (in spin diffusion and transport) have
been fully explored in differentmaterials at various conditions (such as temperature, external field, doping density/material
and strain) and dimensions (including bulk materials, quantum wells, quantum wires and quantum dots). These materials
include III–V and II–VI zinc-blende and wurtzite semiconductors and silicon/germanium, as well as diluted magnetic
semiconductors. The spin relaxation and dephasing mechanisms have been rechecked and reinvestigated at different
conditions. The spin-related material properties have also achieved much progress along with these investigations which
facilitate the better understanding of the observed phenomena as well as the manipulation of the spin coherence. Many
novel spin-related properties, such as the spin Hall effect [6–12], spin Coulomb drag effect [13–15], spin photogalvanic
effect [16,17] and persistent spin helix effect [18–20], have been discovered. For the sake of realizing spintronic devices
such as spin transistors, there have been extensive investigations on spin injection and detection. Much progress has been
achieved on the spin injection from ferromagnetic materials into semiconductors. Nevertheless, a satisfactory realization of
the spin transistor, which is crucial to the application of semiconductor spintronics, is yet to come.
Despite decades of studies, a theoretical understanding of the spin relaxation and dephasing, which is one of the

prerequisites for the realization of spintronics, in both spatially uniform and nonuniform systems is still not fully achieved.
Many new experimental findings go far beyond the previous theoretical understandings, thanks to the rapid development
of experimental techniques including sample preparation and ultrafast optical techniques. Some of the physics requires
a many-body and/or non-equilibrium (even far away from the equilibrium) theory. However, the previous theories [3]
are all based on the single-particle approach and for systems near equilibrium, which thus have strict limitations in their
application to the current experiments. Some even give totally incorrect qualitative predictions. Wu et al. developed a fully
microscopic many-body kinetic spin Bloch equation approach to study the spin dynamics in semiconductors and their
nanostructures. Unlike other approaches widely used in the literature, which treat scattering using the relaxation time
approximation, the kinetic spin Bloch equation approach treats all scattering explicitly and self-consistently. In particular,
carrier–carrier Coulomb scattering is explicitly included in the theory. This allowed them to study spin dynamics not only
near but also far away from equilibrium, for example, spin dynamics in the presence of high electric field (hot-electron
condition) and/or with large initial spin polarization. They applied this approach to study spin relaxation/dephasing and
spin diffusion/transport in various kinds of semiconductors and their nanostructures under diversified conditions, and have
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offered a complete and systematic understanding of spin dynamics in semiconductors. Many novel effects were predicted
and some of them have been verified experimentally.
In this review, we try to provide a full coverage of the latest developments of spin dynamics in semiconductors. Both

experimental and theoretical developments are summarized. In theory, we first review the studies based on the single-
particle approach. Thenweprovide a comprehensive reviewof the results based on the kinetic spin Bloch equation approach.
We organize the paper as follows: We first review the spin interactions in semiconductors in Section 2. Then we briefly
discuss the physics of spin dynamics in semiconductors in Section 3. Here we review the previous understanding on spin
relaxation and dephasing mechanisms. Differing from the existing reviews on these topics [21–23], we try to provide a full
and up-to-date picture of spin dynamics of itinerant carriers in semiconductors. We then review the latest experimental
developments on spin relaxation and dephasing in the time domain as well as the latest theoretical investigations based on
the single-particle approach in Section 4. The theoretical investigations of the spin relaxation and dephasing in spatially
uniform systems based on the kinetic spin Bloch equation approach, together with the experimental verifications, are
reviewed in Section 5. In Section 6 we review the latest experimental and theoretical (single-particle theory) results on
spin diffusion and transport. Then in Section 7 we review the investigation on spin diffusion and transport using the kinetic
spin Bloch equation approach and the related experimental results. We summarize in Section 8.

2. Spin interactions in semiconductors

2.1. A short introduction of spin interactions

Before introducing the spin interactions, it should be mentioned that the ‘‘spins’’ in semiconductors are not pure spins,
or in other words, they are angular momentums which consist of both spin and orbital angular momentums. A direct
consequence is that the g-factor is no longer the g0 = 2.0023 of pure electron spins.
There are various spin interactions in semiconductors. Besides the Zeeman interaction, there is spin–orbit coupling due

to the space inversion asymmetry or strain, s(p)–d exchange interactions with magnetic impurities, hyperfine interactions
with nuclear spins, spin–phonon interactions, and electron–hole and electron–electron exchange interactions. Among these
interactions, spin–orbit coupling usually plays the most important role in spin dynamics. For electrons in the conduction
band, spin–orbit coupling consists of the Dresselhaus, Rashba and strain-induced terms. For valence band electrons, besides
these terms, there is an important spin–orbit coupling from the spin-dependent terms in the Luttinger Hamiltonian in cubic
semiconductors. These spin–orbit couplingsmake themotion of the carrier spin couple with the orbital motion and give rise
to many novel effects in coherent (ballistic) and dissipative (diffusive) electron spin/charge dynamics. A direct consequence
is that the spin polarization of a wave packet oscillates during its propagation [24–31]. Recent studies indicate that as the
precession during the electron propagation correlates the spin polarization with the real-space trajectory, the spin lifetime
is enhanced at certain spatially inhomogeneous spin polarization states, such as some spin grating states [18,20,32–37].
Another important spin interaction is the exchange interaction between carriers due to the permutative antisymmetry of
themany-body fermionwavefunctions. It has been demonstrated to be important for spin dynamics of electrons in quantum
dots [38] and localized electrons bound to impurities [39,40]. The effect of the exchange interactions between free electrons
on spin dynamics was only observed in experiments very recently and has attracted interest [41–43], though it has been
predicted much earlier [44].
Spin interactions togetherwith the induced spin structures are the physical foundations of the vital topic of coherent spin

manipulation, which is crucial for spin-based quantum information processing [45–52] and spintronic device operation
[22,53–56]. For example, spin–orbit couplings enable coherent manipulation of spin by an electric field [53,57–76]. As
the electric field is more easily accessible and controllable in genuine electronic devices at the nanoscale, the electrical
manipulation of spins is important for semiconductor spintronics. The idea has been extended to a large variety of schemes
of electrical or optical manipulation of spin coherence: coherent control via electrical modulation of the g-tensor in
nanostructures with spatially-dependent g-tensor [77–81]; and a similar scheme based on spatially varying magnetic field
[82,83], or hyperfine field [70,84,85]; coherentmanipulation based on tuning the exchange interaction between electrons in
a double quantum dot by gate-voltage [38,86]; coherent spin manipulation via detuned optical pulses which act as effective
magnetic pulses as the Stark shift is spin-dependent due to spin-dependent virtual transition of the circularly polarized
light [87–95]. The p–d or s–d exchange interactions and the induced spin structures further enable the above schemes to
control Mn ion spins in the paramagnetic phase [96–98] or magnetization in the ferromagnetic phase [99,100] in magnetic
semiconductors via manipulating carrier spins.
One of the key obstacles for spintronic device operation and spin-based quantum information processing is the spin

relaxation and spin dephasing (i.e., the decay of the longitudinal and transverse spin components, respectively). Spin
relaxation and spin dephasing, in principle, also originate from the spin interactions: the fluctuation or inhomogeneity in
spin interactions leads to spin relaxation and spin dephasing.1 For example, the spin–orbit coupling is the origin of one of

1 A practical operating scheme should both control the spin interactions and avoid their fluctuation and inhomogeneity carefully. Optimization of the
ability of coherent control and spin lifetime is often needed.
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themost efficient spin relaxationmechanisms–the D’yakonov–Perel’ mechanism [101,102]. Spinmixing due to conduction-
valence band mixing together with momentum scattering give rise to the Elliott–Yafet spin relaxation mechanisms
[103,104]. Other spin relaxation mechanisms are the s(p)–d exchange mechanism, the Bir–Aronov–Pikus mechanism
[105,106] due to the electron–hole exchange interaction [107], the hyperfine interaction mechanism and the anisotropic
exchange interactions between localized electrons [39,40]. Spin relaxation and dephasing in genuine semiconductor
structures are the consequence of the coaction of these mechanisms. Hence it is important to determine the dominant
spin relaxation mechanism under various conditions [3,23,39,108–112].
Finally, as the focus of this review is spin dynamics in semiconductors, we only provide an overview for various spin

interactions and explain the related physics using intuitive and qualitative pictures. For details, we suggest the salient works
in the existing literature: for spin–orbit coupling in semiconductors, the readers could refer to the book by Winkler [113];
for knowledge of the s(p)–d exchange interactions, we suggest the review article by Jungwirth et al. [114] and that by
Furdyna [115] and references therein; the hyperfine interaction in semiconductors has been reviewed recently by Fischer
et al. [116]; details of the spin–phonon interaction can be found in Ref. [117]; and the electron–hole exchange interaction
has been discussed in detail in Refs. [107,118,119].

2.2. Spin–orbit interactions in semiconductors and their nanostructures

A consequence of the relativistic effect in atomic and condensed matter physics is that an electron moving in the atomic
potential V (r) feels an effective magnetic field acting on its spin

HSO =
1

4m20c2
p · [σ× (∇V (r))] , (1)

where m0 and c represent the free electron mass and the velocity of light in vacuum, respectively, σ is the Pauli matrices,
and p stands for the canonical momentum. V (r) is the total potential generated by other charges. In semiconductors, V (r)
includes the periodic potentials generated by the ion-core, the deviation of the periodic potential due to defects andphonons,
and the external potential. This is the origin of various spin–orbit interactions in semiconductors.

2.2.1. Electron spin–orbit coupling term in semiconductors due to space inversion asymmetry
In semiconductors with space inversion symmetry, the electron spectrum satisfies the following relation, εk↑ = εk↓.

This is the consequence of the coaction of the time-reversal symmetry and the space-inversion symmetry. In the absence
of space inversion symmetry, εk↑ 6= εk↓. In this case, there should be some term which breaks the spin degeneracy of the
same k states. The term should be an odd function of both k and σ as it breaks the space inversion symmetry whereas it
keeps the time reversal symmetry. This term is the so-called spin–orbit coupling term. For an electron with spin S = 1/2,
as σiσj = δi,j + iεijkσk (i, j, k = x, y, z and εijk is Levi–Civita tensor), only the linear form of σi can appear in the spin–orbit
coupling term. Hence, the only possible form of the spin–orbit coupling term is

HSO =
1
2
�(k) · σ, (2)

where �(k) is an odd function of k, which acts as an effective magnetic field. In a reversed logic, any electron spin–orbit
coupling which can be written in the form HSO =

∑
n,m,i,j C

ij
nmσ

n
i k
m
j , can be reduced to the form of Eq. (2). Hence the

breaking of the space inversion symmetry is a prerequisite2 for the appearance of an electron spin–orbit coupling term
in semiconductors.3
In semiconductors, there are several kinds of space inversion asymmetry: (i) the bulk inversion asymmetry due to

structures lacking an inversion center [123], such as zinc-blende III–V or II–VI semiconductors; (ii) the structure inversion
asymmetry resulting from the inversion asymmetry of the potentials in nanostructures, including an external gate-voltage
and/or built-in electric field [124,125]; and (iii) interface inversion asymmetry associated with the chemical bonding within
interfaces [126,127]. Besides, strain can also induce inversion asymmetry and lead to spin–orbit coupling. The explicit form
of the spin–orbit couplings due to these space inversion asymmetries can be obtained, e.g., by the k · p theory [113].

2.3. Explicit form of the spin–orbit coupling terms in semiconductors

The explicit form of the spin–orbit coupling in semiconductors can be derived from the k·p theory. For common III–V and
II–VI semiconductors, such as GaAs, InAs, CdTe and ZnSe, the minimum k · p theory to describe carrier and spin dynamics is
the eight-band Kane model [113,128]. In the following, we introduce spin–orbit coupling in the framework of such model.

2 Note that, it was found that there is intersubband spin–orbit coupling even in symmetric quantum wells [120,121], which seems to contradict the
above conclusion. However, even in symmetric quantum wells, the space inversion symmetry is broken at the boundary of the quantum well [120,121].
3 Differently, a hole has spin J = 3/2, where J2i 6= 1. Hence, terms which are quadratic in J can appear in the spin–orbit coupling. These terms should be
even in k in order to keep the time-reversal symmetry. Hence, a hole can have spin–orbit coupling terms which do not break space inversion symmetry.
Actually, the Luttinger Hamiltonian [122] only contains spin-dependent terms quadratic in k.
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2.3.1. Kane Hamiltonian and block-diagonalization
In zinc-blende structures, the Kane model is of the following form [117]

HKane =

 Hc Hc,v Hc,sv
HĎ
c,v Hv Hv,sv
HĎ
c,sv HĎ

v,sv Hsv

 . (3)

The subscripts c , v, sv denote the conduction, valence and the split-off valence bands respectively. As Hc,v , Hv,sv and Hc,sv
are nonzero, the electron motions in these bands are coupled together, which is obviously too complex. Fortunately, the
couplings between these bands are much smaller than their separations. By a perturbative block-diagonalization, one can
decouple the motions in these bands. The block-diagonalization is achieved by the Löwdin partition method [129], which is
actually a unitary transformation. For example, the eigenenergy En(k) and eigenstateΨn(k) of the original KaneHamiltonian
satisfy the following eigenequation

HKaneΨn(k) = En(k)Ψn(k). (4)

After a unitary transformation,

H̃KaneΨ̃n(k) = En(k)Ψ̃n(k), (5)

where H̃Kane = UHKaneUĎ is block-diagonal. As the couplings between bands Hc,v , Hv,sv and Hc,sv are small near the center of
the concerned valley (For most of the III–V and II–VI semiconductors, the concerned valley is Γ valley, where k = 0 is the
valley center.), the results can be given in a perturbative expansion series. Below, we give the results with only the lowest
order nontrivial terms kept, which are enough for the discussion of spin dynamics in most cases. Besides the transformation
of the Hamiltonian, the wavefunction also changes slightly, Ψ̃n(k) = UΨn(k). This modification of the wavefunction always
leads to the mixing of different spin states. In the presence of spin-mixing, anymomentum scattering can lead to spin flip
and spin relaxation, which gives the Elliott–Yafet spin relaxation mechanism [103,104].
In the following, we present the conduction (electron) and valence (hole) band parts of the block-diagonal Hamiltonian

H̃Kane.

2.3.2. Electron Hamiltonian and spin–orbit coupling in bulk system
By choosing x, y, z axes along the crystal axes of [100], [010] and [001] respectively, the electron Hamiltonian can be

written as

He =
k2

2me
+
1
2
�D · σ+

1
2
�S · σ, (6)

where me is the electron (conduction band) effective mass. The second and third terms in the right hand side of the above
equation describe the Dresselhaus spin–orbit coupling [123] and strain-induced spin–orbit coupling [117] respectively.

ΩDx = 2γDkx(k2y − k
2
z ), ΩSx = 2C3(εxyky − εxzkz)+ 2Dkx(εyy − εzz), (7)

with other components obtained by cyclic permutation of indices. Here γD is the Dresselhaus coefficient, which can be
expressed formally as γD = 2η/[3mcv

√
2meEg(1− η/3)] [117], where η = ∆SO/(Eg + ∆SO) with Eg and ∆SO being the

bandgap and the spin–orbit splitting of the valence band respectively. mcv is a parameter with mass dimension and is
related to the interaction between the conduction and valence bands [117]. The coefficients γD, C3 and D are crucial for spin
dynamics. There have been a lot of studies on these quantities, especially γD, in common III–V semiconductors (such as GaAs,
InAs, GaSb and InSb), both theoretically and experimentally [117,130–141]. Interestingly, these studies give quite different
values of γD in GaAs from 7.6 to 36 eV Å3. Detailed lists of γD in GaAs in the literature are presented in Refs. [139–141].
Latest theoretical advancements include the first principle calculations [139,141] and full-Brillouin zone investigations [141,
142]. Recently, from fitting the magnetotransport properties in chaotic GaAs quantum dots [140] and from fitting the spin
relaxation in bulkGaAs via the fullymicroscopic kinetic spin Bloch equation approach [110], γD in GaAswas found to be 9 and
8.2 eV Å3 respectively, which are close to the value γD = 8.5 eV Å

3 from ab initio calculations with the GW approximation
[139].4The coefficient for strain-induced spin–orbit coupling is C3 = 2c2η/[3

√
2meEg(1− η/3)], where c2 is the interband

deformation-potential constant.D comes from higher order corrections which is usually smaller than C3. The strain-induced
spin–orbit coupling was studied experimentally in Refs. [77,144], indicating that the strain induced spin–orbit coupling can
be more important than the Dresselhaus spin–orbit coupling and that both the C3 and D terms can be dominant. Recently,
the coefficients C3 and D from ab initio calculations showed good agreement with the experimental results [145], where
C3 = 6.8 eV Å and D = 2.1 eV Å.

4 There are other recent papers [141,143] with γD close to 8.5 eV Å3 .
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2.3.3. Electron spin–orbit coupling in nanostructures
An electric field can also break the space inversion symmetry and lead to additional spin–orbit coupling [124,125]. In III–V

and II–VI heterostructures, the induced spin–orbit coupling, named the Rashba spin–orbit coupling, can be as important as
(or even more important than) the Dresselhaus spin–orbit coupling, due to bulk inversion asymmetry [146,147]. The effect
is caused by the total electric field, including the external electric field due to gate-voltage, the electric field due to built-in
electrostatic potential and the electric field due to interfaces [113]. The leading effect of interfaces is to produce a spatial
variation of the band edge, which thus leads to an effective electric field. Via the Löwdin partition method, one obtains

HR = α0σ · (k× Ev(r)). (8)

Here α0 = eη(2− η)P2/(3m20E
2
g ), with P being the interband momentum matrix [113], Ev(r) = ∇Vv(r)/|e|where Vv(r) is

the potential felt by the valence electron. Averaging Ev(r) over, e.g., the subband wavefunction of a quantum well, one has

HR = αRσ · (k× n̂), (9)

where αR = α0〈Ev(r)〉 is the Rashba parameter and n̂ is a unit vector along the growth direction of the quantum well.
Historically, there is a paradox about the Rashba parameter. According to the Ehrenfest Theorem, the average of the

force acting on a bound state is zero. Therefore, the Rashba parameter should be very small. This paradox is resolved by
Lassnig [148], who pointed out that for the Rashba spin–orbit coupling in the conduction band, αR is related to the average
of the electric field in the valence band over the conduction band (subband) wavefunction. As pointed out above, the electric
potential on the valence or conduction band comprises three parts,

Vv(r) = Vext(r)+ Vbuilt(r)+ Ev(r), Vc(r) = Vext(r)+ Vbuilt(r)+ Ec(r), (10)

where Ec(r) and Ev(r) are the position dependent conduction and valence band edges. Vbuilt(r) is the built-in electrostatic
potential and Vext(r) is the external electrostatic potential. Let VCoul(r) = Vext(r) + Vbuilt(r) (total electrostatic (Coulomb)
potential). According to the Ehrenfest theorem, one has 〈∇VCoul(r)〉 = −〈∇Ec(r)〉, as the average over the (conduction)
electron wavefunction (denoted as 〈. . .〉) of the net force felt by electron is zero. If the ratio of the valence band offset to the
conduction band one is rvc , then

〈∇Vv(r)〉 = 〈∇(VCoul(r)+ rvcEc(r))〉 = (1− rvc)〈∇VCoul(r)〉. (11)

For example, in GaAs/AlxGa1−xAs quantum wells rvc ' −0.5, hence 1 − rvc ' 1.5. Therefore, the Rashba spin–orbit
coupling is proportional to the average of the sum of the external and built-in electric field. The above discussion is just a
simple illustration on the existence of the Rashba spin–orbit coupling, where a few factors have been ignored. Nevertheless,
the indication that the Rashba spin–orbit coupling can be tuned electrically inspired the community. Many proposals of
spintronic devices based on electrical manipulation of spin–orbit coupling, such as spin field-effect transistors [54], were
proposed.5 In this background, the Rashba spin–orbit couplings in various heterostructures have been studied extensively.
Theoretical investigations on the Rashba spin–orbit coupling in quantum wells were performed in Refs. [151–157].
Specifically, it was found that even in symmetric quantum wells, the built-in electric field contributes an intersubband
Rashba spin–orbit coupling, though it does not contribute to the intrasubband spin–orbit coupling [120,121].
Experimental methods to determine the spin–orbit coupling coefficients consist of magnetotransport (including both

the Shubnikov-de Haas oscillation [158–168] and weak (anti-)localization [137,169–176]), optically probed spin dynamics
(spin relaxation [177–179] and spin precession [60]), electron spin resonance [180] and spin–flip Raman scattering
[133,181], etc. Recently, it was proposed that the radiation-induced oscillatorymagnetoresistance can be used as a sensitive
probe of the zero-field spin-splitting [182]. The experimental results indicated that the largest Rashba parameter αR can be
30 × 10−12 eV m [161,163] or even 40 × 10−12 eV m [165] for InAs and 14 × 10−12 eV m for GaSb [180] quantum wells,
while the smallest Rashba parameter can be negligible [178,183].6
In asymmetric quantum wells, both the Rashba and Dresselhaus spin–orbit couplings exist. After averaging over the

lowest subband wavefunction in the (001) quantum well, the Dresselhaus spin–orbit coupling becomes

HD = βD(−kxσx + kyσy)+ γD(kxk2yσx − kyk
2
xσy), (12)

whereβD = γD〈k̂2z 〉 =
∫
dzφ1(z)∗(−∂2z )φ1(z)withφ1(z) being the lowest subbandwavefunction. In narrow quantumwells,

the linear-k term dominates. The ratio of the strength of the Dresselhaus spin–orbit coupling to the Rashba one βD/αR can
be tuned by the well width or the electric field along the growth direction [37,113]. The electric field dependence of the
Dresselhaus and Rashba spin–orbit couplings in GaAs/AlxGa1−xAs quantumwells for various well widths was studied in the
work by Lau and Flatté [146], indicating that under highbias theRashba spin–orbit coupling can exceed theDresselhaus one.7

5 For recent advancement in experiment on spin field-effect transistors, see, e.g., Refs. [55,149,150].
6 The channel width dependence [167], density dependence [159–162,165,166,169–173], gate-voltage dependence [158,159,163,164,173,178],
temperature dependence [177] and interface effect [162,165,172,174,184] were investigated in various materials from InAs, InGaAs and GaAs to GaSb.
Rashba spin–orbit coupling in quantum wire was studied in Refs. [185–191].
7 The effects of structure inversion asymmetry, heterointerface and gate-voltage on the Dresselhaus and Rashba spin–orbit couplings in quantum wells
were studied experimentally in Refs. [37,55,137,162,175,178,179,183,192,193].
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The interference of the two spin–orbit couplings leads to anisotropic spin splitting, which hence results in anisotropic spin
precession [64–67], spin relaxation [194–199], spin diffusion [29,32–34,37] and spin photocurrent [200–202]. Conversely,
the ratio of βD/αR can be inferred from the anisotropy of spin precession [64,203], spin relaxation [198,199], spin diffusion
[29,33] and spin photocurrent [200,201].

2.3.4. Hole Hamiltonian and hole spin–orbit coupling in bulk system
The hole Hamiltonian can be written as [113]

Hh = HL + HhSO + Hhsp, (13)

where HL is the Luttinger Hamiltonian, HhSO is the spin–orbit coupling due to the space inversion asymmetry and Hhsp
describes the hole–strain and hole–phonon interactions which can be found in Ref. [117]. The Luttinger Hamiltonian HL
is given by [122] (in the order of hole spin state Jz = − 32 ,−

1
2 ,
1
2 ,
3
2 with the z axis along the [001] direction)

HL =

P + Q L M 0
L∗ P − Q 0 M
M∗ 0 P − Q −L
0 M∗ −L∗ P + Q

 , (14)

where

P =
γ1

2m0
k2, Q =

γ2

2m0
(k2x + k

2
y − 2k

2
z ), L = −

2
√
3γ3
2m0

(kx − iky)kz,

M = −

√
3

2m0
[γ2(k2x − k

2
y)− 2iγ3kxky],

(15)

with γ1, γ2 and γ3 being the Luttinger parameters.

HhSO =
1
η
(�D + �S) · J (16)

which is similar to the spin–orbit coupling in the conduction band except differing by a factor of 1/η. Here J = (Jx, Jy, Jz) is
the hole spin operator with J = 3/2.
Under the spherical approximation, the Luttinger Hamiltonian can be written in a compact form,

HspL =
γ1

2m0
k2 +

γ̄2

2m0

[
5
2
k2 − 2(k · J)2

]
, (17)

where γ̄2 = (2γ2 + 3γ3)/5. Under this approximation, the spectrum of the hole becomes parabolic,

Eλ1/λ2(k) =
k2

2m0
(γ1 ± 2γ̄2). (18)

The indices λ1 = ± 12 , λ2 = ±
3
2 denote the hole spin. The four branches with different effective massm0/(γ1± 2γ̄2) are the

light hole and heavy hole branches respectively. The two fold degeneracy of the spectrum is a consequence of the coexistence
of the time-reversal symmetry and the space inversion symmetry of the Luttinger Hamiltonian.
In zinc-blende III–V or II–VI semiconductors, γ1 and γ̄2 are usually of the sameorder ofmagnitude (e.g., in GaAs, γ1 = 6.85

and γ̄2 = 2.5 [204]). Therefore the spin-dependent term in Eq. (17) (the spin–orbit coupling term) is comparable to the spin-
independent ones. This indicates that the spin–orbit coupling is very strong in bulk hole systems, which is one of the main
differences between bulk electron and hole systems. The main consequences are that: change in orbit motion (states) can
strongly influence spin dynamics [23,113,205,206]; the spin relaxation/dephasing is usually much faster in hole systems
(∼100 fs) than in electron systems [207–210].

2.3.5. Hole spin–orbit coupling in nanostructures
As mentioned above the hole spin–orbit coupling is important in determining hole spectrum and its spin state. In

nanostructures, it is always necessary to diagonalize the hole Hamiltonian Eq. (13) including the confining potential [113,
143]. The dispersion and spin states can vary markedly with the confinement geometry [113]. It was demonstrated that in
p-GaAs quantum wells the in-plane and out-of-plane effective masses and g-factors of the lowest heavy-hole subband can
be quite different for different growth directions [113].
Similar to the electron case, the electric field can also induce the Rashba spin–orbit coupling in hole systems, which is

written as [113]

HhR = α
h
0J · (k× E c). (19)
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In [001] grown quantum wells, it is reduced to

HhR = α
h
0〈Ec〉(kyJx − kxJy), (20)

where αh0 is a material dependent parameter [113] and 〈Ec〉 is the average of the electric field (along the growth direction)
acting on the conduction band over the hole subband envelope function. In practice, to obtain the Rashba spin–orbit
coupling in, e.g., the lowest heavy-hole subband, one must further block-diagonalize the subband Hamiltonian via the
Löwdin partition method [113]. Quite different from the electron case, the subband block-diagonalization gives another
Rashba spin–orbit coupling which originates from the electric field on the other hole subband rather than the conduction
band. Practical calculation indicated that such a kind of Rashba spin–orbit coupling is more important than that due to the
valence-conduction band coupling (Eq. (20)) [113]. The expression of such a kind of Rashba spin–orbit coupling in the lowest
heavy-hole subband is given by [113],

HHHR = α
hh
〈Ez〉i(k3+σ− − k

3
−
σ+), (21)

where k± = kx± iky, σ± = σx± iσy, with σ being the Pauli spin matrices in themanifold of hole spin Jz = −3/2, 3/2. 〈Ez〉 is
the electric field acting on the valence band averaged over the lowest hole subband envelope function. For an infinite depth
rectangular quantum well [113],

αhh =
e
m20

64
9π2

γ3(γ2 + γ3)

[
1
∆hl11

(
1
∆hl12
−
1
∆hh12

)
+

1
∆hl12∆

hh
12

]
, (22)

where ∆hlij (i, j = 1, 2, . . .) is the splitting between the i-th heavy-hole subband and the j-th light-hole subband. Similar
to the case in the electron system, the hole Rashba spin–orbit coupling can also be tuned by gate-voltage and structure
asymmetry, but now αhh is also electric field dependent [113,211–214].

2.4. Spin–orbit coupling in nanostructures due to interface inversion asymmetry

The interface inversion asymmetry is a kind of inversion asymmetry caused by the inversion asymmetric bonding of
atoms at the interfaces of nanostructures.8 It was first pointed out by Aleĭner and Ivchenko [215] that the symmetry at the
interface may be different from the symmetry away from the interface, and hence may introduce a new spin–orbit coupling
[127,216,217]. The interface-induced spin–orbit coupling was usually studied in quantum wells. The underlying physics is
similar for other nanostructures.
Let us start by examining the case of GaAs/AlAs quantum wells. Without the interface effect, the quantum wells possess

a D2d symmetry. It is easy to find that due to the difference of Al and Ga atoms, the symmetry at the interface is reduced
to C2v [113]. For quantum wells which possess a mirror symmetry, the asymmetry induced by the two interfaces cancels
out [113]. However, in the situation that the materials in the well and barrier do not share a common atom, the interface
effect at the two interfaces can not be canceled out as they are different interfaces [126]. For example, in InAs/GaSb quantum
wells, the two interfaces are Sb–In–As and In–As–Ga. The symmetry of the quantum well is then reduced to C2v and results
in new spin–orbit coupling terms for holes and electrons. It induces a term ∼ (JxJy + JyJx) and independent of k in the
hole Hamiltonian [113], which mixes the heavy-hole and light-hole spins effectively in narrow quantum wells [216,217]
and largely suppresses the hole spin lifetime in these structures [216]. The induced electron spin–orbit coupling is of the
linear-Dresselhaus-type∼ (kxσx − kyσy) [218].
The experimental test of the importance of the interface-induced electron spin–orbit coupling was performed by

comparing the spin dynamics in InGaAs–AlInAs quantum wells (which share one common atom) with that in InGaAs–InP
quantum wells (which have no common atom) with similar parameters and overall quality [219]. The observed huge
difference in spin relaxation times between these two samples indicates that the interface inversion asymmetry induced
spin–orbit coupling is important in narrow quantum wells without a common atom in the well and barrier.
It should be pointed out that in [110] grown quantum wells, even in the case without a common atom in the well and

barrier, the two interfaces can be symmetric.9 Hence the interface inversion asymmetry does not contribute. By comparing
the spin relaxation in InAs/GaSb quantumwells with different growth directions, with the help of theoretical calculation, it
was found that the interface inversion asymmetry plays an important role in narrow InAs/GaSb quantum wells [221,222].
In genuine nanostructures, as interfaces can not be perfect, the interface inversion asymmetry exists in most samples. A

quantitative analysis of such an effect requires the knowledge of specific interfaces, which is usually very difficult to acquire.
In general, since it is an interface effect, the interface inversion asymmetry should be important to spin–orbit coupling in
narrow quantum wells with no common atom in the barrier and well, whereas it is unimportant in other cases.

8 The interface inversion asymmetry induced spin–orbit coupling is also reviewed in Ref. [113].
9 The study on the quantum well growth direction dependence of the interface induced spin–orbit coupling is presented in Ref. [220].
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2.5. Zeeman interaction with external magnetic field

The Zeeman interaction for the electron is written as

HZ = µBS · ĝ · B, (23)

where ĝ is the g-tensor and µB is the Bohr magneton. The g-tensor determines the spin precession (both the frequency
and the direction) in the presence of an external magnetic field. It is hence an important quantity for spin dynamics. For
typical III–V semiconductors, such as GaAs, the conduction band g-tensor is isotropic ĝe = ge1̂. In GaAs, at the conduction
band edge, ge = −0.44, whereas for higher energy the g factor increases [223–225]. An empirical relation for the energy
ε dependence of the g factor in GaAs was found from experiments as ge(ε) = −0.44 + 6.3ε (ε in unit of eV) [225–227].
Experiments indicated that the g factor varies from−0.45 to−0.3 in the temperature range of 4–300 K [228–232]. Recent
calculations [232] indicated that the temperature dependence of the g-factor is mainly due to the combined effects of (i)
the energy-dependent g factor and (ii) the thermal dilatation of the lattice.
In quantum wells the g factors of the barrier material and well material are usually different or even of opposite signs.

The g factor can then be tuned by well width. For example, in GaAs/AlAs quantum wells: at large well width the electronic
property is GaAs-like and ge < 0; at small well width the subbandwavefunction largely penetrates into the AlAs barrier and
the electronic property is AlAs-like, hence ge > 0. This phenomenon has been observed in experiment [233]. Moreover, due
to the confinement in the quantumwell, which reduces the symmetry of the system, the electron g-factor usually becomes
anisotropic: the in-plane g-factor g‖ is different from the out-of-plane one g⊥ [113,234–236].
In parabolic GaAs/AlGaAs quantum wells, as the Al concentration is tuned almost continuously with position in the

growth direction, the g-tensor becomes position dependent ĝe(z). The effective g-tensor is an average over position
ĝ∗ =

∫
dzĝe(z)|ψe(z)|2, whereψe(z) is the electron subbandwavefunction. This fact enables efficient tuning of the electron

g-tensor by modulating the subband wavefunction via, e.g., gate-voltage [67,78,237]. A time-dependent gate-voltage can
induce amodification to the Zeeman interaction δHZ = µBS·δĝ ·B (δĝ is the change of g-tensor due to gate-voltage). In proper
geometry, the time-dependent gate-voltage induces a spin precession perpendicular to the unperturbed spin precession. In
such a way, electron spin resonance is achieved with a time-dependent gate voltage. Such a spin resonance, which is called
g-tensor modulation resonance, was first proposed and realized by Kato et al. [77].
The hole Zeeman interaction is complicated. In the bulk system there are two termswhich contribute to the hole Zeeman

interaction,

HhZ = 2κµBB · J+ 2qµBB · T . (24)

Here κ is the isotropic valence band g factor, whereas q is the anisotropic one. T = (J3x , J
3
y , J

3
z ). In GaAs κ = 1.2, whereas

q = 0.01 is much smaller and can always be neglected. It is noted that there is no direct coupling between spin-up and
-down heavy holes (Jz = 3

2 ,−
3
2 ) in the Zeeman interaction unless in the much smaller anisotropic term (the second term

in Eq. (24)).
In (001) quantum wells, the lowest subband is the heavy-hole subband if no strain is applied. According to the above

analysis, for an in-plane magnetic field, the coupling of spin-up and -down states is rather small. Within the subband
quantization, the Löwdin partition method gives the dominant terms of the Zeeman interaction in the lowest heavy-hole
subband as

HHHZ =
3κµB
m0∆hl11

{
σx
[
Bxγ2

(
k2x − k

2
y

)
− 2Byγ3kxky

]
+ σy

[
2Bxγ3kxky + Byγ2

(
k2x − k

2
y

)]}
, (25)

where∆hl11 denotes the splitting between the lowest heavy-hole subband and the lowest light-hole subband. Note that the
in-plane g factor of the lowest heavy-hole subband is k-dependent and the average of the g factor is zero. The in-plane
g-factor of the lowest heavy-hole subband varies significantly with the growth direction of the quantum well, as pointed
out by Winkler et al. [113,238].
Zeeman interaction of holes in quantumwires has been investigated only recently. Experimentally, Danneau et al. found

that the g-factor of holes in quantum wires along [2̄33] direction is largely anisotropic [239]. Theoretically, Csontos and
Zülicke reported that the hole g-factor in quantum wire can vary largely with subband [240] and can be tuned effectively
by confinement [241]. These predictions were partly confirmed recently in the experiment by Chen et al. [242]. Similar
results were found in hole quantum dots [243,244]. The large anisotropy and variation of the hole g-factor in these quantum
confined systems are not surprising, as (i) the symmetry of these structures is reduced and (ii) the hole spin–orbit coupling
is very strong.

2.6. Spin–orbit coupling in Wurtzite semiconductors and other materials

In previous discussions, the spin–orbit coupling and g-factor in bulk and nanostructures of the zinc-blende III–V and II–VI
compounds are reviewed. Besides these two important kinds of materials, there are several other kinds of materials with
different structures which have also attracted much attention of the semiconductor spintronic community.
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Table 1
Rashba-type (αi) (inmeVÅ) andDresselhaus (γi) (in eVÅ3) spin–orbit coupling coefficients inwurtzite ZnOandGaNat smallmomentumwith i = e, 9, 7, 7′ .
From Fu and Wu [245].

αe α9 α7 α7′ γe γ9 γ7 γ7′

ZnO: 1.1a 0 35a (21b) 51a 0.33 0.09 6.3 6.1
GaN: 9.0b 0 45b 32b 0.32 0.07 15.3 15.0
a From Ref. [249].
b From Ref. [250].

One of these materials is the wurtzite structure semiconductors, such as GaN, AlN and ZnO.10 In contrast to the zinc-
blende semiconductors such as GaAs, the existence of hexagonal c-axis in wurtzite semiconductors leads to an intrinsic
wurtzite structure inversion asymmetry in addition to the bulk inversion asymmetry [246,247]. Therefore, the electron spin
splittings include both the Dresselhaus effect [245,248] (cubic in k) and Rashba effect (linear in k) [124,125,249–254]. In a
recent work by Fu and Wu [245], a Kane-type Hamiltonian was constructed and the spin–orbit coupling for electron and
hole bands were investigated in the full Brillouin zone in bulk ZnO and GaN.
For the states near the Γ point (k = 0), by choosing the z axis along the c axis of the crystal, the electron spin–orbit

coupling in the conduction band reads [245]

HeSO = [�
R
e (k)+ �

D
e (k)] · σ/2 (26)

with

�Re (k) = 2αe(ky,−kx, 0), �De (k) = 2γe(bk
2
z − k

2
‖
)(ky,−kx, 0). (27)

Here�Re (k) and�
D
e (k) are the Rashba-type and Dresselhaus terms, respectively. αe and γe are the corresponding spin–orbit

coupling coefficients. b is a coefficient originating from the anisotropy induced by the lattice structure. It was found that in
ZnO and GaN, b = 3.855 and 3.959 respectively [245]. The value of αe and γe are listed in Table 1 [245].
In wurtzite semiconductors, the valence bands consist of three separated bands: Γ9v (heavy-hole, spin±3/2), Γ7v (light

hole, spin±1/2) andΓ7′v (split-off hole, spin±1/2). The spin–orbit couplings in these bands at small k can also bewritten in
the general formof 12 [�

R
i (k)+�

D
i (k)]·σ, which includes both the linear Rashba-type term

1
2�

R
i (k), and the cubic Dresselhaus

term 1
2�

D
i (k), with i = e, 9, 7, 7

′ being the band index. For heavy-hole band Γ9v , the spin–orbit coupling fields are written
as [245]

�R9(k) = 0, �D9 (k) = 2γ9(ky(k
2
y − 3k

2
x), kx(k

2
x − 3k

2
y), 0). (28)

For valence bands Γ7v (light-hole) and Γ7′v (split-off hole), the spin–orbit coupling fields are the same as that given in Eq.
(27) with only the coefficients αe and γe being replaced by αi and γi (i = 7, 7′) (the coefficients for Γ7v and Γ7′v bands)
respectively [245]. The coefficients αi and γi (i = e, 9, 7, 7′) are listed in Table 1 [245].11

Interestingly, in a two-dimensional electron system (quantum wells or heterojunctions) where the growth direction
is along the c-axis, the linear-k spin–orbit coupling is of the same form for both the Dresselhaus and Rashba-type terms
due to the crystal field. An additional contribution to the spin–orbit coupling comes from the electric field across the two-
dimensional electron system, which is just the Rashba spin–orbit coupling [124,125]. Therefore, all the linear in k terms are
of the Rashba-type,12whichmakes them indistinguishable in experiments. Indeed, experiments revealed that the spin–orbit
coupling is dominated by the Rashba-type spin–orbit coupling, where no effect that signals spin–orbit coupling of the form
of (kxσx − kyσy) was observed [247,256–260]. The measured Rashba parameter lies in the range of 0.6 to 8 × 10−12 eV m
various conditions [251–254,261–268].
Another kind of material of special interest is the so-called gapless semiconductor, such as HgTe, partly because in

HgTe/CdTe quantum wells the quantum spin Hall effect was observed [269]. HgTe, which is also a zinc-blende II–VI
semiconductor, has the same symmetry as CdTe and GaAs. However, the Γ8 band, which consists of heavy and light holes
in GaAs, is higher than the conduction band Γ6. Moreover, the heavy-hole band is inverted, i.e., the effective mass of the
electron in the heavy-hole band is positive. On the other hand, the conduction band Γ6, becomes hole-like. In HgTe/CdTe
quantumwells, the relative position of theΓ6 andΓ8 bands can be tuned bywell width. At the crossing band point amassless
Dirac spectrum is realized [270]. The spin–orbit coupling in these bands was investigated both theoretically [271] and
experimentally [147,272–278], where the Rashba spin–orbit coupling was found to be very large (' 4 × 10−11 eV m) in
a two-dimensional electron system.

10 GaN also has zinc-blende structure phase. The spin–orbit coupling in zinc-blende GaN was studied in Ref. [245].
11 Using these coefficients, Buß et al. found reasonable agreement between calculated spin relaxation times and the experimentally measured ones
recently [255].
12 The symmetry of the cubic term is also the same as the linear one.
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Spin dynamics in silicon has attracted renewed interest recently due to the experimental advancement in silicon
spintronic devices [149,150,279–282] and also due to recent development in spin qubits based on silicon quantum
dots [283–285] or donor bound electrons [286–289]. Silicon has a diamond structure with space inversion symmetry,
hence bulk silicon does not have the Dresselhaus spin–orbit coupling. In two-dimensional or other nanostructures, the
Rashba spin–orbit coupling due to structure inversion asymmetry emerges [124,125,290]. Moreover, the interface inversion
asymmetry also contributes to a new spin–orbit coupling, which can be either the Rashba-type or the linear-Dresselhaus-
type or their combinations depending on the symmetry of the interface [291,292]. The effect of the electric field on electron
spin–orbit coupling in a Si/SiGe quantumwell was discussed in Ref. [293]. In practice, the doping inhomogeneity can induce
a random (in-plane position dependent) electric field along the growth direction even in nominally symmetrically doped
quantum wells. This random electric field can induce a random Rashba spin–orbit coupling [294]. Similarly, the surface
roughness can also induce a random spin–orbit coupling [291]. Experimentally, the electron spin–orbit coupling in silicon
quantumwells was determined via the anisotropy of the electron spin resonance frequency and line-width [295–297]. Hole
spin–orbit coupling in silicon quantum wells was studied in Refs. [298,299].

2.7. Hyperfine interaction

The origin of the hyperfine interaction is that the nuclear spins feel the magnetic field generated by carriers due to their
spins and orbital angular momentums. For a conduction band electron, which has s-wave symmetry, the magnetic field
generated by the electron orbital motion is negligible. The electron hyperfine interaction is of the form [3,300]

Hhf =
∑
i,ν

2µ0
3
βνγeγνδ(r− Ri,ν)S · Ii,ν . (29)

Here µ0 is vacuum permeability, γe = 2µB and i is the index of the Wigner–Seitz cell. For III–V and II–VI compounds
(such as GaAs), there are two atoms (such as Ga and As) in each Wigner–Seitz cell. Also the nuclei of certain atoms have
isotopes (such as 69Ga and 71Ga). The index ν labels both the atomic site in the Wigner–Seitz cell and the isotopes. βν is the
abundance and

∑
ν βν = Natm with Natm being the number of atoms within a Wigner–Seitz cell. Natm = 2 for zinc-blende

structures. γν = gνµN with gν andµN representing the g factor of the ν nucleus and the nuclear magneton respectively. Ri,ν
and Ii,ν represent the position and spin of the ν nucleus in i-th Wigner–Seitz cell. In practical calculation it is assumed that
the isotopes are distributed uniformly. Within the envelope function approximation, the electron hyperfine interaction is
written as

Hhf =
∑
i,ν

Aνv0|ψ(Ri)|2S · Ii,ν = h · S, (30)

where Aν =
2µ0
3 γeβνγν |uc(Rν)|

2N0 and h =
∑
i,ν Aνv0|ψ(Ri)|

2Ii,ν . Here v0 is the volume of the Wigner–Seitz cell and
N0 = 1/v0, uc is the Bloch wave amplitude. A =

∑
ν Aν measures the strength of the hyperfine interaction. In GaAs, possible

isotopes are 69Ga, 71Ga and 75As, which all have spin I = 3/2. Their natural abundances are β69Ga = 0.6, β71Ga = 0.4 and
β71As = 1. The average strength of the hyperfine interaction is A ' 90 µeV. In silicon, the possible isotopes are 28Si and 29Si
with natural abundances β28Si = 0.9533 and β29Si = 0.0467. In silicon, the main isotope

28Si has no nuclear spin and only
the minor isotope 29Si has spin I = 1/2. Hence the average hyperfine interaction in silicon A ∼ 0.2 µeV is much smaller
than that in GaAs.
For holes, as the valence band Bloch wavefunction is very small at the nuclei position (which is a property of p-wave

symmetry), the contact hyperfine interaction is negligible. However, the long range dipole–dipole interaction and the
interaction between electron orbital angular momentum and nuclear spin do not vanish for holes.13 Within the envelope
function approximation, Fischer et al. showed that the hyperfine interaction for heavy-holes in the quantum well is of the
Ising form [301]

Hhhf =
∑
i,ν

Ahνv0|ψ(Ri)|
2Sz Izi,ν, (31)

where Sz is the z-component of the heavy-hole spin and Ahν is the hole hyperfine coupling constant. Fischer et al. estimated
that the hole hyperfine coupling constant Ahν is about −10 µeV in GaAs [301], about one order of magnitude smaller than
the electron one.
Besides inducing spin relaxation, the hyperfine interaction can also transfer the nonequilibrium carrier spin polarization

to the nuclear spin system, which is called the dynamic nuclear polarization [3,302–310]. Via the hyperfine interaction,

13 In contrast, these interactions are zero for (conduction band) electrons due to s-wave symmetry.
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periodic optical pumping of electron spin polarization acts as a periodicmagnetic field on nuclear spin and induces a nuclear
spin resonance [311]. As nuclear spin relaxes much slower than electron spin, nuclear spin was proposed as a long-lived
‘‘quantum memory’’ for spin qubits [312,313]. Such a proposal was realized in experiment in 31P donors in an isotopically
pure 28Si crystal [314].

2.8. Exchange interaction with magnetic impurities

The exchange interaction between carrier and magnetic impurities, such as Mn, is very important in diluted magnetic
semiconductors [315], as it is the physical origin of various magnetic orders in these materials. For example, the d orbital
electrons of Mn impurities mix with s (conduction band) or p (valence band) electrons in the semiconductor matrix, which
leads to the exchange interactions between carriers and Mn impurities [315,316]. These interactions, known as the s–d and
p–d exchange interactions, can be written as

Hsd = −
∑
i

JsdS · S
(i)
d δ(r− Ri), Hpd = −

∑
i

JpdJ · S
(i)
d δ(r− Ri). (32)

Here S(i)d is the ith Mn spin at Ri. S and J represent the electron and hole spins respectively. Jsd and Jpd stand for the s–d and
p–d exchange constants respectively. The exchange constants, which are basic parameters of magnetic semiconductors,
have been extensively studied both theoretically and experimentally (for review in (III, Mn)V, see Ref. [114] and references
therein; for (II, Mn) VI, see Ref. [115]). To illustrate the strength of the s(p)–d exchange interaction, we give two examples:
in GaMnAs, N0Jsd ≈ −0.1 eV [233,317], N0Jpd ≈ −1 eV [114]; in CdMnTe, N0Jsd ≈ 0.22 eV, N0Jpd ≈ −0.88 eV [115] where
N0 = 1/v0, with v0 being the volume of the unit cell.

2.9. Exchange interaction between carriers

The exchange interaction between carriers originates from the combination of the carrier–carrier Coulomb interaction
and the permutative antisymmetry of the wavefunction of the fermionic carrier system. The exchange interaction usually
increases with the overlap between the wavefunction of the carriers. Therefore, it is usually strong in localized carrier
systems, such as carriers in quantum dots or those bound to ionized impurities. Experiments have shown that the exchange
interaction between electrons in quantum dots can be tuned via the magnetic field14 [319,320] or by the gate voltage
[38,86,319], varying from several meV to very small. The exchange interaction between electrons bound to adjacent donors
is believed to be responsible for the spin relaxation of the donor bound electrons [39,40,321–324,324,325]. The underlying
physics is that due to the spin–orbit coupling, the exchange interaction becomes anisotropic, which no longer conserves the
total spin of the electron system and hence leads to spin relaxation.
Furthermore, the exchange interaction between extended carriers also shows up in spin dynamics. For example, the

exchange interaction between electrons and holes15 leads to electron spin relaxation, which is called the Bir–Aronov–Pikus
mechanism. Specifically, this exchange interaction consists of two parts: a short-range part and a long-range part. The short-
range part is written as [118]

HSR = −
1
V
1
2

∆ESR
|φ3D(0)|2

Ĵ · ŜδK,K′ , (33)

where ∆ESR is the exchange splitting of the exciton ground state and |φ3D(0)|2 = 1/(πa30), with a0 being the exciton Bohr
radius. K = ke + kh is the sum of the electron ke and hole kh wave-vectors of the interacting electron–hole pair. V is the
volume of the sample. The long-range part reads [118]

HLR =
1
V
3
8
δK,K′

∆ELT
|φ3D(0)|2

(
M̂z Ŝz +

1
2
M̂−Ŝ+ +

1
2
M̂+Ŝ−

)
, (34)

where∆ELT is the longitudinal-transverse splitting; M̂z , M̂− and M̂+(= M̂
Ď
−) are operators in hole spin space. Ŝ± = Ŝx ± iŜy

are the electron spin ladder operators. The expressions for M̂z and M̂− are given below (in the order of hole spin Jz =
3
2 ,
1
2 ,−

1
2 ,−

3
2 ),

14 This was first predicted by Burkard et al. [318].
15 The electron–hole exchange interaction is in fact from the conduction-valence band mixing [107].
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M̂− =
1
K 2
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. (36)

Here K± = Kx± iKy and K 2‖ = K
2
x + K

2
y . The short-range and long-range parts of the electron–hole exchange interaction can

be written in a compact form (i = z,+,−),

Hex =
1
V
δK,K′

(
Ĵz(K)Ŝz +

1
2

Ĵ−(K)Ŝ+ +
1
2

Ĵ+(K)Ŝ−
)
with Ji(K) =

1
|φ3D(0)|2

[
3
8
∆ELTM̂i(K)−

1
2
∆ESR Ĵi

]
. (37)

In semiconductor nanostructures, e.g., in quantum wells, the above electron–hole exchange interaction should be written
in the subband bases. Such expressions have been derived in Ref. [118]. Also, it is shown that the quantum confinement can
enhance the electron–hole exchange interaction in quantum wells [119].
Unlike the electron–hole exchange interaction, the exchange interaction between free electrons had almost been ignored

by the community until several years ago. It was first pointed out by Weng and Wu that the exchange interaction between
free electrons (the Coulomb Hartree–Fock term), which acts as an effective magnetic field along the spin polarization
direction, plays important role in spin dynamics [44]. For example, if the spin polarization is along the z axis, the effective
magnetic field from the Hartree–Fock term reads [44,110],

BHF(k) =
∑
q
Vq
(
fk−q↑ − fk−q↓

)
/geµB, (38)

where fk−q↑ and fk−q↓ are the distributions on the spin-up and spin-down bands respectively. ge is electron g-factor and
Vq = e2/[ε0κ0q2ε(q)] in bulk, with ε(q) being the dielectric function. At large spin polarization, BHF can be as large as
a few tens of Tesla for an electron density of 4 × 1011 cm−2 at 120 K in a GaAs quantum well [44]. Recently, the effect
of the exchange interaction between electrons was observed in experiments in a high mobility two-dimensional electron
system [41,42,326]. The Hartree–Fock effective magnetic field has also been observed in other experiments recently [327].
A detailed review on the Hartree–Fock effective magnetic field on spin dynamics is given in Section 5.4.3.

3. Spin relaxation and spin dephasing in semiconductors

After briefly introducing various spin interactions,wenowmove to one of the central issues in this review: spin relaxation
and dephasing, i.e., the dissipative part of the spin dynamics. As stated before, any fluctuation or inhomogeneity in spin
interactions can lead to spin relaxation and spin dephasing. From the spin interactions, one can identify the possible spin
relaxation/dephasing mechanisms. In what follows, we first introduce the concepts of spin relaxation and dephasing in the
time domain aswell as in the spatial domain.We then introduce the relevant spin relaxationmechanisms in semiconductors
and their nanostructures.

3.1. Spin relaxation and spin dephasing

Simply speaking, spin relaxation is related to the nonequilibrium population decay of the spin-resolved energy
eigenstates, whereas spin dephasing is related to the destruction of phase coherence of these eigenstates. For a single spin
system with isotropic g-factor, spin relaxation is related to the decay of spin polarization parallel to the external magnetic
field, whereas spin dephasing is related to the decay of spin polarization transverse to the magnetic field. Spin relaxation
time (denoted as T1) and spin dephasing time (T2) are quantities to characterize the time scale of spin relaxation and spin
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dephasing.16 Microscopically, spin relaxation and spin dephasing are usually related to different processes. Although spin
relaxation also inevitably leads to spin dephasing, there are processes which only contribute to spin dephasing, called
pure dephasing processes [328]. Spin relaxation and spin dephasing in a single spin system are caused by the unavoidable
coupling with the fluctuating environment, such as the phonon system, nuclear spin system and other electrons nearby.
These processes are always irreversible.
Often there are many electron spins forming a spin ensemble. For an ensemble of spins, spin polarization can decay

without coupling to any environment: when spin precession frequencies or directions vary from part to part within the
ensemble, the total spin polarization gets a free-induction-decay due to destructive interference. This variation is called
the inhomogeneous broadening [329,330]. For a finite ensemble with independent spins, the decay of total spin polarization
can be reversible: after some time, spins in all parts of the ensemble rotate to the same direction.17 However, quite often,
the ensemble is very large, e.g., there are ∼1016 cm−3 electrons in n-doped GaAs. In this regime, the spin decay due to
inhomogeneous broadening can not be reversed automatically. However, the inhomogeneous broadening induced spin
decay can still be removed by the technique of spin echo. Standard spin echo is achieved by aπ-pulsemagnetic fieldwhich is
perpendicular to the inhomogeneous broadened (effective)magnetic field, to invert the sign of the phase gained through spin
precession so that the gained phase can be gradually canceled out in the subsequent evolution. The ensemble spin relaxation
and spin dephasing times including the inhomogeneous broadening are usually denoted as T ∗1 and T

∗

2 respectively, whereas
the irreversible (echoed) spin relaxation and spin dephasing times are denoted as T1 and T2 respectively. In the following,
whenwe need not to discriminate the two, we simply denote the spin relaxation time and dephasing time as τs and called it
spin lifetime. There are many factors which contribute to inhomogeneous broadening, such as the k-dependent spin–orbit
coupling [332] or the energy (or k)-dependent g-factor [333,334]. In quantum dots, due to the spin–orbit coupling, the
electron or hole g-factor is size and geometry dependent [335]. The variations of the size and geometry of quantum dots
in a quantum dot ensemble also lead to inhomogeneous broadening [331]. Finally, the time and/or space variations of the
nuclear hyperfine field also lead to inhomogeneous broadening.
Spin diffusion and transport also suffers spin relaxation. In the absence of inhomogeneous broadening, the spin diffusion

length Ls is related to the spin lifetime τs as Ls =
√
Dsτs, whereDs is the spin diffusion constant. However, in semiconductors

it has been shown that the inhomogeneous broadening usually dominates spin diffusion [25,28,336], which breaks down
the above relation [32,35]. The inhomogeneous broadening in spin diffusion and transport is different from that in spin
relaxation in the time domain: an electron in a different k state has a different velocity and/or spin precession frequency
�(k) (e.g., due to the spin–orbit coupling), making the spin propagation frequency along the spin diffusion direction (n̂) k-
dependent∼ Ω(k)/(k·n̂) [25,28,29,336,337]. This inhomogeneous broadening can not be removed by traditional spin-echo.
However, it can be tuned by controlling spin–orbit coupling [18,29,32,34,337,338]. For example, when both the Rashba and
Dresselhaus spin–orbit couplings exist, by tuning the two to be comparable, the spin diffusion length can be greatly increased
[18,29,32,34,337–340]. Such enhancement of spin diffusion length has been achieved in a recent experiment, where the
control over both the doping asymmetry and well width was shown to be effective to manipulate the relative strength of
the Rashba and Dresselhaus spin–orbit couplings and hence the spin diffusion length [37]. Studies on spin diffusion in the
literature are reviewed in Sections 6 and 7. Belowwe concentrate on spin relaxation and spin dephasing in the time domain,
where the basic physics and the mechanisms responsible for spin relaxation and spin dephasing are reviewed.

3.1.1. Single spin relaxation and spin dephasing due to a fluctuating magnetic field
As stated above, fluctuations in spin interaction due to the coupling with the environment are the origin of spin

relaxation and spin dephasing in single spin system. In this subsection, we discuss, in general, the spin relaxation and spin
dephasing in a single spin system,where the fluctuations in spin interaction are simply characterized as fluctuatingmagnetic
fields. These fluctuating magnetic fields are assumed to have a correlation time τc which is much shorter than the spin
relaxation/dephasing time, so that the Markovian approximation is justified [341]. We also assume that the fluctuations
are weak so that they can be treated within the Born approximation. The spin dynamics is then solved by the standard
Born–Markov method [341].18
The Hamiltonian is simply given by

H =
1
2
[ω0n̂z + ω(t)] · σ, (39)

where n̂z is a unit vector along the z direction. ω0 and ω(t) are spin precession frequencies due to the static and fluctuating
magnetic fields respectively. The correlation of the fluctuating magnetic fields is assumed to be (for i, j = x, y, z)
ωi(t)ωj(t ′) = δi,jω

2
i e
−|t−t ′|/τc , with the overline denoting the ensemble average. The requirement of the shortness of the

correlation time τc and the weakness of the fluctuating magnetic fields is equivalent to
√∑

i ω
2
i τc � 1. The spin relaxation

16 Spin decay does not have to be exponential. However, in most cases, a characteristic decay time can be identified.
17 This phenomenon was recently observed in experiments in spin dephasing in an ensemble of self-assembled quantum dots [331].
18 It is noted that discussions in this subsection are similar to those in Ref. [22] in Section IV B2.
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time and spin dephasing time are obtained by solving the Born–Markov equation of motion. After a standard derivation one
obtains that [22],

1
T1
=
(ω2x + ω

2
y)τc

1+ ω20τ 2c
,

1
T2
= ω2z τc +

(ω2x + ω
2
y)τc

2(1+ ω20τ 2c )
. (40)

From these results, one may find several features of spin relaxation/dephasing. First, a trivial result, only the noise magnetic
fields perpendicular to the spin polarization lead to spin decay, as only these fields can rotate spin. Second, in the absence
of a static magnetic field, the spin relaxation/dephasing rate is proportional to the noise correlation time τc . That is to say
that the more fluctuating the noise (the shorter correlation time) is, the more ineffective it is. This counter-intuitive result
is known as motional narrowing [329]. Third, a static magnetic field suppresses the spin relaxation/dephasing caused by
the fluctuating magnetic field perpendicular to it. The underlying physics is better understood in the fashion of what was
presented in the review article by Fabian et al. [22]: In the presence of magnetic field, the spin–flip scattering terms acquire
a dynamic phase. However, the scattering terms which conserve the spin along the magnetic field do not acquire such a
dynamic phase. The spin–flip term is then proportional to∫ t�τc

0
dt ′ωi(0)ωi(t ′) exp(−iω0t ′)+ H.c. ∝ ω2i

τc

ω20τ
2
c + 1

. (41)

Therefore the effect of fluctuating magnetic field perpendicular to the static magnetic field is suppressed.
In the following, we illustrate several limits which are frequently encountered in spin relaxation in semiconductors.

Eq. (40) can be written as

1/T2 = 1/T ′2 + 1/(2T1), (42)

where 1/T ′2 = ω2z τc . Therefore, in general case, T2 ≤ 2T1. In the isotropic noise case, ω2x = ω2y = ω2z , at very low static
magnetic field ω0τc � 1, the spin relaxation time is equal to the spin dephasing time, T1 = T2 [342]. At very large static
magnetic field, spin relaxation vanishes as 1/T1 → 0, whereas the spin dephasing rate is finite, 1/T2 = 1/T ′2. This is a
pure dephasing case. The noise can be anisotropic. For example, when there are only transverse noises, ωx 6= 0, ωy 6= 0
and ωz = 0, T2 = 2T1.19 As another example, when there are only longitudinal noises, ωx = ωy = 0 and ωz 6= 0. In this
case, there is no spin relaxation 1/T1 = 0 but the spin dephasing rate is still finite, i.e., 1/T2 = ω2z τc . This is another pure
dephasing case. If ω2x + ω2y � ω2z , then T2 � T1.

3.1.2. Ensemble spin relaxation and spin dephasing: a simple model
To illustrate the role of the inhomogeneous broadening in the ensemble spin relaxation and spin dephasing, here

we introduce a simple model which actually has been well studied in the context of semiconductor optics. Denote the
conduction band as ‘‘spin up’’, the valence band as ‘‘spin down’’ and their distributions as f ↑k and f

↓

k . The interband coherence,
like the spin coherence, is a complex variable ρk = ρcv(k)e−iωt (ω is the laser light frequency). Hence the model system is
equivalent to a spin ensemble. The optical relaxation and dephasing is described by the Bloch equation [345,346]

∂tSk = ωk × Sk −


1
T2

0 0

0
1
T2

0

0 0
1
T1

 (Sk − S0k). (43)

In semiconductor optics, ωk = (−dcvE, 0, δk) where dcv is the interband optical dipole, E is the laser electric field and
δk = εc,k − εv,k − ω = k2/2mR + Eg − ω is the detuning with the frequency of light. For simplicity, take ω = Eg and
hence δk = k2/(2mR).mR is the reduced effective mass of the electron–hole pair. Sk = (Reρk,−Imρk, [f

↑

k − f
↓

k ]/2) and the
equilibrium polarization is S0k = (0, 0,−1/2). T1 and T2 represent the irreversible decay due to fluctuations. In the absence
of the laser field E = 0, the solution of the equation gives the transverse polarization as[

Sxk(t)
Syk(t)

]
=

[
cos(δkt) − sin(δkt)
sin(δkt) cos(δkt)

] [
Sxk(0)
Syk(0)

]
e−t/T2 . (44)

19 An example is the spin relaxation in GaAs quantumdots due to the spin–orbit coupling and phonon scattering, as demonstrated byGolovach et al. [343].
This conclusion was later generalized to spin relaxation due to arbitrary phonon scattering at low temperature when only the lowest two Zeeman levels
are relevant by Jiang et al. [344].
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As the oscillation frequency δk varies with k, the total transverse polarizations Sx(t) =
∑

k S
x
k(t) and Sy(t) =

∑
k S
y
k(t) get

an additional decay due to inhomogeneous broadening besides e−t/T2 . In two-dimensional system, assuming a simplified
initial condition: Sxk(0) = 0, S

y
k(0) = −1 for k ≤ km and S

y
k(0) = 0 for k > km, one obtains

Sx(t) = e−t/T2
∑
k
sin(δkt) = e−t/T2

k2m
4π
1− cos(δkm t)

t/T ′′2
. (45)

The inhomogeneous broadening induces a power law decay with a characteristic time T ′′2 = 2mR/k
2
m. Now the optical

dephasing rate is

1/T ∗2 = 1/T2 + 1/T
′′

2 . (46)

The inhomogeneous broadening induced dephasing 1/T ′′2 can be removed by photon echo. Exerting a π-pulse along the
y-axis at time T , the transverse polarization after the pulse is[

Sxk(T )
Syk(T )

]
=

[
cos(δkT ) sin(δkT )
− sin(δkT ) cos(δkT )

] [
Sxk(0)
Syk(0)

]
e−T/T2 . (47)

The transverse polarization at time t = 2T is given by[
Sxk(2T )
Syk(2T )

]
=

[
cos(δkT ) − sin(δkT )
sin(δkT ) cos(δkT )

] [
Sxk(T )
Syk(T )

]
e−T/T2 =

[
Sxk(0)
Syk(0)

]
e−2T/T2 . (48)

Now the inhomogeneous broadening induced dephasing is removed and only the irreversible dephasing 1/T2 remains.
Theoretically, the decay rate of the incoherently summed optical coherence P(t) =

∑
k |ρk(t)| =

∑
k |S

x
k(t) + iS

y
k(t)|,

can be used to obtain the irreversible optical dephasing rate 1/T2 [347], as the phase of ρk(t) is removed.
Similar to the case of optical dephasing, the inhomogeneous broadening of the spin precession induces spin dephasing

in an spin ensemble [334]. This inhomogeneous broadening can be removed by spin echo [348]. As pointed out by Wu and
co-workers, the irreversible spin dephasing can be obtained from the decay of the incoherently summed spin coherence
[334,336,349,350], similar to that in optical dephasing.
In a system with isotropic g-tensor, the spin polarization parallel to the magnetic field does not precess. However, in

general, the g-tensor can be anisotropic and spin polarization parallel to the magnetic field can also precess. In this case,
spin polarization along the magnetic field may also suffer the inhomogeneous broadening induced decay. We then have
both T ∗1 and T

∗

2 in such situation.
20 An example of such an ensemble is the spins in self-assembled quantum dots [352–354].

3.2. Spin relaxation mechanisms

In this subsection, we introduce spin relaxation mechanisms in semiconductors. Generally speaking, any fluctuation
or inhomogeneity of spin interaction can induce spin relaxation and dephasing. However, there are several mechanisms
which are more efficient than others. For the materials widely used in spintronics, such as III–V and II–VI semiconductors,
there are only a few relevant spin relaxation/dephasing mechanisms, such as the Elliott–Yafet mechanism [103,104],
the D’yakonov–Perel’ mechanism [101,102], the Bir–Aronov–Pikus mechanism [105,106] and the g-tensor inhomogeneity
mechanism [333,334]. These mechanisms dominate spin relaxation and dephasing in the metallic regime. In the insulating
regime, othermechanisms such as the anisotropic exchange interaction [40,322] and the hyperfine interaction [3] prevail. In
semiconductor quantum dots, spin relaxation/dephasing is dominated by the electron–phonon scattering and the hyperfine
interaction as well as their combinations. In magnetically doped semiconductors, the exchange interaction with magnetic
impurities can also play an important role in spin relaxation and dephasing. Below we give a brief introduction to these
mechanisms.

3.2.1. Elliott–Yafet mechanism
The Elliott–Yafet mechanism was first proposed by Elliott [104] and Yafet [103] during their study on spin relaxation in

silicon and alkali metals. It was pointed out by Elliott that due to the spin–orbit interaction the electronic eigenstates (Bloch
states) mix spin-up and spin-down states. For example [21,104],

Ψkn↑(r) = [akn(r)| ↑〉 + bkn(r)| ↓〉]eik·r, (49)

Ψkn↓(r) = [a∗−kn(r)| ↓〉 − b
∗

−kn(r)| ↑〉]e
ik·r, (50)

where akn(r) and bkn(r) possess the lattice periodicity. These two Bloch states are connected by time reversal and space
inversion operators [21,104]. Usually the spinmixing is very small, i.e., |b| � 1 and |a| ≈ 1.When the spin–orbit interaction

20 A simple example demonstrating the same physics is presented in Ref. [351].



78 M.W. Wu et al. / Physics Reports 493 (2010) 61–236

is much smaller than the band splitting, an estimation of |b| from perturbation theory gives [21,355] |b| ∼ max{LSO/∆E},
where LSO are the spin–orbit interactions with other bands and ∆E are the band distances. In the presence of such spin
mixing, any spin-independent scattering can cause spin flip and hence spin relaxation. It should be emphasized that without
scattering the spin-mixing alone can not lead to any spin relaxation. Besides, there is another process leading to spin
relaxation: the phonon modulation of the spin–orbit interaction. As the spin–orbit interaction is induced by the periodic
lattice ions, the lattice vibration can then directly couple to spin and lead to spin–flip. Such a kind of process was first
considered by Overhauser within the jullium model for metal [356] and then by Yafet with a specific band structure [103].
This process is called the Yafet process, whereas the previous one due to the spin mixing is called the Elliott process.
Elliott observed a relation, the ‘‘Elliott relation’’, between the spin lifetime τs and the deviation of the electron g-factor

from that of the free electron g0 = 2.0023 [104]: 1/τs ≈ (∆g)2/τp, where ∆g = g − g0 and τp is the average momentum
scattering time. The relation is based on the observation that ∆g ∼ |b| by perturbation theory. The Elliott relation was
verified experimentally by Monod and Beuneu, who observed an empirical factor of 10, i.e., 1/τs ' 10(∆g)2/τp [357].
Of course these relations are rough, the specific ratio of τs/τp depends on the specific scattering and band structure.
A systematic theoretical study was given by Yafet [103], where the microscopic band structure and electron–phonon
scattering were considered to obtain the spin lifetime. Yafet gave a relation between the spin lifetime τs and the resistivity
ρ : 1/τs ∼ 〈b2〉ρ [103]. The Yafet relationwas tested experimentally byMonod and Beuneu [358]. It was found that inmany
materials the Yafet relation agrees well with experiments [21,358]. However, it is not consistent with the experimental
results in MgB2, where the spin relaxation rate is not proportional to the resistivity above 150 K. The problem was solved
by Simon et al. [355] recently via generalizing the Elliott–Yafet theory to the regime where the scattering-induced spectral
broadening of the quasi-particle 1/τp is comparable with the band gap. This condition is satisfied inMgB2 because one of the
bands across the Fermi surface is very close to the nearest band (' 0.2 eV) and the electron–phonon interaction is strong.
In this regime, the spin lifetime is given by

τ−1s =
L2effτp

1+∆ω2effτ 2p
, (51)

where∆ωeff is the average band gap and Leff is the interband spin–orbit interaction. In theweak scattering or large band-gap
regime, ∆ωeffτp � 1, the above equation returns to the Yafet relation, 1/τs = (Leff/∆ωeff)2/τp. Spin relaxation due to the
Elliott–Yafet mechanism in polyvalent metals (such as aluminum) was studied by Fabian and Das Sarma [359,360]. Through
realistic calculation, they found that the electron spin relaxation is significantly enhanced at the Brillouin zone boundaries,
special symmetry points and lines of accidental degeneracy. The total spin relaxation rate is then determined by the spin
relaxation rates at these ‘‘spin-hot-spots’’ [359,360].
In III–V or II–VI semiconductors’ zinc-blende structure, for realistic calculation of the Elliott–Yafet spin relaxation, one

should start from the Kane Hamiltonian. By Löwdin partitioning (block-diagonalization), the conduction bandwavefunction
is transformed to Ψ̃c(k) = UΨn(k), where U is the unitary matrix for Löwdin partitioning. This transformation mixes
spin-up and -down states a little, which enables spin flip by spin-independent fluctuation. After the transformation U , the
conduction band matrix element of a spin-independent fluctuation of the lattice potential (including the electron–electron
interaction) Vck,ck′ = 〈ck|V |ck′〉, changes into Ṽck,ck′ = 〈ck|UĎVU|ck′〉, which may contain a spin–flip part. The spin–flip
interaction consists of long-range and short-range parts. The long-range part comes from the first order perturbation of
the wavefunction (both in U and UĎ) and the intraband spin-independent fluctuation. The short-range part comes from
the combination of U (or UĎ) and the interband electron–phonon interactions. For example, for U = eSk , the lowest order
long-range part is given by 〈ck| 12 (S

Ď
kS

Ď
kV + 2S

Ď
kVSk′ + VSk′Sk′)|ck

′
〉, whereas the lowest order short-range part is given by

〈ck|SĎkV+VSk′ |ck
′
〉. The long-range interaction is the Elliott process,whereas the short-range interaction is the Yafet process.

After the transformation, the leading term of the long-range part is given by [117]

Ṽck,ck′ = Vck,ck′ [1− iλc(k× k′) · σ], (52)

where λc = η(1 − η/2)/[3meEg(1 − η/3)] with η = ∆SO/(∆SO + Eg). The spin lifetime due to long-range part of the
Elliott–Yafet mechanism is

τ−1s = A
〈εk〉

2

E2g
η2
(
1− η/2
1− η/3

)2
τ−1p , (53)

where the numerical factor A ∼ 1 depending on the specific scattering. The short-range interaction due to the interband
electron–optical-phonon interaction is given by

ṼOPk,k′ = −
1
3
ηd2[U× (k+ k′)] · σ
[2meEg(1− η/3)]1/2

. (54)

Here U is the relative displacement of the two atoms in a unit cell which can be expressed as combinations of phonon
creation and annihilation operators [117]. Assuming that the longitudinal and transversal optical phonons have the same
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frequency ωLO = ωTO, the spin relaxation due to the short-range interaction reads [117]

τ−1s = Asr
〈εk〉

2

EgE0

η2

1− η/3
τ−1p . (55)

Here E0 = C2/(4d2me), with C = eωLO
√
4πD(κ−1∞ − κ−10 ) (D is the volume density, κ0 and κ∞ are the static and high

frequency dielectric constants) and Asr ∼ 1. The short-range interaction due to the interband electron–acoustic-phonon
interaction can be derived similarly. The explicit form is given in Ref. [117]. Usually the long-range interaction is more
important than the short-range one in III–V semiconductors [21,117].
The Elliott–Yafet spin relaxation in bulk InSb at low temperature was first studied by Chazalviel [361], where only the

electron–impurity scattering was considered. Very recently, Jiang and Wu studied the Elliott–Yafet spin relaxation in bulk
III–V semiconductorswith all relevant scatterings (i.e., electron–impurity, electron–phonon, electron–electron Coulomb and
electron–hole Coulomb scatterings) included in a fully microscopic fashion [110]. The Elliott–Yafet spin relaxation in bulk
siliconwas studied systematically by Cheng et al. [362], where the Elliott and the Yafet processes interfere destructively and
the spin relaxation is largely suppressed [362].
Similarly, both the admixture of different spin states due to the Löwdin partitioning and the phonon modulation of

spin–orbit interaction lead to the Elliott–Yafet spin relaxation for holes and split-off holes.

3.2.2. D’yakonov–Perel’ mechanism
In III–V and II–VI semiconductors, due to the bulk inversion asymmetry in lattice structure, spin–orbit coupling

emerges in the conduction band. In semiconductor nanostructures, the structure and interface inversion asymmetry further
contribute additional spin–orbit coupling. Spin–orbit coupling is equivalent to a k-dependent effective magnetic field
HSO = 1

2Ω(k) · σ, where �(k) is the spin precession frequency. In the presence of momentum scattering, an electron
changes its momentum k randomly, hence the spin precesses randomly between adjacent scattering events. This random-
walk-like evolution of spin phase leads to spin relaxation. This spin relaxation mechanism is called the D’yakonov–Perel’
mechanism [101,102]. There are two regimes for the D’yakonov–Perel’ spin relaxation: (i) a strong scattering regime where
〈Ω〉τp � 1 (〈. . .〉 stands for the average over the electron ensemble), and (ii) a weak scattering regime where 〈Ω〉τp & 1.
Here τp is themomentum scattering time. The spin lifetime in regime (i) can be estimated as 1/τs = 〈Ω2〉τp according to the
randomwalk theory. This spin relaxation has the salient feature of motional narrowing, i.e., stronger momentum scattering
leads to longer spin lifetime. In regime (ii) the momentum scattering no longer impedes spin relaxation. In contrast, via the
spin–orbit coupling,momentumscattering provides a spin relaxation channel [334,363]. In this regime, strongermomentum
scattering leads to shorter spin lifetime [363]. Analytic results with only the electron–impurity scattering give that the
irreversible spin lifetime is τs = 2τp [363–365]. As 〈Ω〉τp & 1, the spin precession due to the spin–orbit coupling is not
inhibited by the scattering. As a consequence, the ensemble spin polarization oscillates at zero magnetic field [363,364].
Besides, such prominent spin precession leads to the free induction decay. The ensemble spin lifetime is then limited by
both the irreversible decay and the free induction decay τ−1s '

√
〈Ω2〉 [21,363,365]. Both regime (i) and regime (ii) have

been realized experimentally in GaAs quantum wells [366,367]. In particular, the crossover from regime (ii) to regime (i)
has been observed by Brand et al. [368].
The characteristic of the D’yakonov–Perel’ spin relaxation is that during adjacent momentum scatterings spins precess

coherently. Hence a spin-echo at a time scale comparable to or smaller than themomentum scattering time τp can efficiently
suppress the D’yakonov–Perel’ spin relaxation. Such a proposal was given in a recent work by Pershin [348].
Inmost cases the system is in the strong scattering regime. In this regime, some analytical results concerning spin lifetime

can be obtained for an isotropic band, if one assumes that (1) the carrier–carrier scattering can be neglected,21 (2) the
system is near equilibrium22 and (3) the electron–phonon scattering can be treated in the elastic scattering approximation.
Within these assumptions and approximations, for three-dimensional case, following Pikus and Titkov, the evolution of spin
polarization along the z direction is [117]

∂tSz = −τ̃l[Sz〈Ω lxΩ
l
x +Ω

l
yΩ

l
y〉 − Sx〈Ω

l
xΩ

l
z〉 − Sy〈Ω

l
yΩ

l
z〉], (56)

where 〈. . .〉 represents the average over the direction of k. The equations for the evolution of Sx and Sy can be obtained by
index permutation. The momentum scattering time τ̃l is given by

τ̃−1l =

∫ 1

−1
W (θ)[1− Pl(cos θ)]d cos θ. (57)

The integer l is determined by the angular dependence of the spin–orbit field. The above results assume that the spin–orbit
coupling Hamiltonian satisfies ĤSO = 1

2Ω
l
· σ =

∑
m ĈlmY

l
m(θk, φk), where θk and φk are the angular coordinates of k in

21 It was first pointed out by Wu and Ning [334] that although normal (not umklapp) carrier–carrier scattering does not contribute to the mobility, it
contributes to the D’yakonov–Perel’ spin relaxation, as it randomizes the momentum.
22 That is, the electron distribution is close to the equilibrium distribution and the spin polarization is very small.
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spherical coordinates, Y lm stands for the spherical harmonics and the coefficients Ĉlm are 2×2matrices. Here the summation
is taken overm, whereas l is fixed. For example, l = 1 for linear spin–orbit coupling due to strain and l = 3 for Dresselhaus
cubic spin–orbit coupling. If there are both linear and cubic spin–orbit couplings, the summation over l should also be added
into the above equations. According to Eq. (56), with the summation over l, the spin relaxation tensor is given by [3,21,22]

(τ−1s )ij =
∑
l

τ̃p

γl
[〈|�l|2〉δij − 〈Ω

l
iΩ
l
j 〉], (58)

where γl = τ̃p/τ̃l and τ̃p = τ̃1. For the two-dimensional case, expanding the spin–orbit coupling as ĤSO =
∑
l
1
2�

leilθk · σ,
one obtains a similar result [369,370]

(τ−1s )ij =
∑
l

τ̃p

γl
[|�l|2δij −Ω

l
iΩ
−l
j ], (59)

with τ̃−1l =
∫ 2π
0 W (θ)(1 − cos lθ)dθ . To give an example, consider electron spin relaxation due to the D’yakonov–Perel’

mechanism in bulk III–V semiconductors. In the absence of strain, the electron spin–orbit coupling comes solely from the
Dresselhaus term,

�(k) = 2γD[kx(k2y − k
2
z ), ky(k

2
z − k

2
x), kz(k

2
x − k

2
y)]. (60)

In this case spin relaxation is isotropic

(τ−1s )ij = δij
τ̃p

γ3

8
105

(2γD)2k6. (61)

Here γ3 depends on relevant scattering: for ionized-impurity scattering γ3 ' 6; for acoustic-phonon scattering γ3 ' 1;
for optical-phonon scattering γ3 ' 41/6. After the average over the electron distribution, the spin relaxation rate is given
by [21],

τ−1s ' Q
′τmα

2
〈ε3k〉/Eg . (62)

α = 2γD
√
2m3eEg is a dimensionless parameter. τm = 〈τ̃p(εk)εk〉/〈εk〉.

23 Q ′ ∼ 0.1 is a numerical constant depending on the
relevant momentum scattering [21] Q ′ = 128

3675γ
−1
3 (ν + 7

2 )(ν +
5
2 ), where the power law τ̃p ∼ ε

ν
k is assumed for each kind

of momentum scattering. For a nondegenerate electron system, one obtains (Q = 105
8 Q

′)

τ−1s ' Q τmα
2(kBT )3/Eg , (63)

where Q ∼ 1 depending on relevant scattering: Q ' 1.5 for ionized impurity scattering, Q ' 3 for longitudinal optical
phonon scattering [371], Q ' 0.8 for piezoelectric acoustic phonon scattering, and Q ' 2.7 for acoustic phonon scattering
due to the deformation potential [3,21].
Finally, it should be noted that cautionmust be taken on the assumptions and approximations used in the above results.

For example, in intrinsic bulk GaAs at temperature below 100 K, the electron–electron and electron–hole scatterings
dominate the momentum scattering. The assumption that the carrier–carrier scattering can be neglected does not hold.
Therefore, the above results fail [110]. It has been shown that the electron–electron scattering is important for spin relaxation
in high mobility two-dimensional systems, where the above results also fail [366,372].
The influence of the magnetic field on the D’yakonov–Perel’ spin relaxation comes from two factors: the Zeeman

interaction and the orbital effect.24 The Zeeman interaction leads to Larmor spin precession and induces a slowdown of
the relaxation for the spin component parallel to the Larmor spin precession direction [117],

τs(B) ' τs(0)[1+ (ωLτc)2], (64)

where ωL is the Larmor frequency. τc = γ−1l τ̃p is the correlation time of the random spin precession due to spin–orbit
coupling. This result is similar to Eq. (40). The Larmor spin precession alsomixes the relaxation rates of the spin components
perpendicular to the Larmor spin precession direction. This may lead to a considerable effect on the spin relaxation in
semiconductor nanostructures where the spin relaxation tensor is usually anisotropic [199,377,388]. In a non-quantizing
magnetic field, the orbital effect induces the cyclotron motion where the electron velocity (hence its k) rotates under the
Lorentz force. As the spin–orbit effective magnetic field Ω(k) is k dependent, the rotation in k leads to the rotation in
the spin–orbit field. This leads to the reduction of the D’yakonov–Perel’ spin relaxation which is related to the rotating
component of�(k) [117,376]

τs(B) ' τs(0)[1+ (ωcτc)2], (65)

23 In the remaining part of the paper, we denote all these quantities (τ̃l , τ̃p and τm) as τp in qualitative discussions, if we can.
24 The effect of magnetic field on the D’yakonov–Perel’ spin relaxation was studied in the semiclassical limit in Refs. [117,333,373–381] as well as in the
quantum limit in Refs. [382–387].
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where ωc = eB/me is the cyclotron frequency. Note that the ratio of the Larmor frequency and the cyclotron frequency
is ωL/ωc = |ge|me/(2m0). In semiconductors, as me is usually smaller than m0 and often |ge| < 2, the ratio is always
much smaller than 1 (in GaAs, it is' 0.015). Hence the cyclotron effect is stronger than the Zeeman interaction [117]. The
reduction of the spin relaxation rate is saturated at highmagnetic field, where Landau level quantization dominates. At such
a high magnetic field, electron spin relaxes similarly to that in localized states or that in quantum dots [382–387].
The hole D’yakonov–Perel’ spin relaxation is different from the electron one mainly in two aspects: (1) the hole

spin–orbit coupling is usually much stronger, and (2) the hole has spin J = 3/2. Due to the strong spin–orbit coupling,
the D’yakonov–Perel’ mechanism is very efficient in a hole system and the spin lifetime is usually very short. For example,
the hole spin lifetime in intrinsic bulk GaAs is observed to be ' 0.1 ps [207]. As the spin–orbit coupling is strong, the
hole system is usually in the weak scattering regime of the D’yakonov–Perel’ spin relaxation [206,208,363]. Lü et al. found
that in a two-dimensional hole system the spin polarization oscillates without an exponential decay in the weak scattering
regime [363]. In this case, the spin lifetime is not easily characterized. However, the incoherently summed spin coherence
P(t) =

∑
k |ρk(t)| (ρk denotes the spin coherence) shows good exponential decay, and from its decay rate the irreversible

spin dephasing rate is obtained [363]. Another salient feature of hole spin systems is that a hole has spin J = 3/2. As a
consequence the spin density matrix of a hole system is 4 × 4 which contains spin coherence that does not correspond to
any spin polarization. Also, the hole spin–orbit coupling may not be equivalent to an effective magnetic field as there can
be high powers of the hole spin operator J (such as (k · J)2 in the Luttinger Hamiltonian (Eq. (17))). In the work of Winkler
[389], the hole spin density matrix is decomposed by the spin multipole series to provide a more systematic understanding
of the spin-dependent phenomena in hole systems. Winkler found that the hole spin–orbit coupling can induce transfer
between different spin multipoles, while the magnetic field can only induce spin precession of the spin dipole (i.e., the spin
polarization) in bulk hole systems [389]. The transfer of the hole spin multipoles under the hole spin–orbit coupling was
found to influence the hole spin polarization relaxation due to the D’yakonov–Perel’ mechanism [208].

3.2.3. Bir–Aronov–Pikus mechanism
It was proposed by Bir, Aronov and Pikus that the electron–hole exchange scattering can lead to efficient electron spin

relaxation in p-type semiconductors [105,106]. According to the electron–hole exchange interaction given in Eq. (37), within
the elastic scattering approximation, the spin lifetime limited by the Bir–Aronov–Pikus mechanism is given by the Fermi
Golden rule,

1
τs(k)

= 4π
∑
q,k′
m,m′

δ(εk + ε
h
k′m′ − εk−q − ε

h
k′+qm)|J

(+) k′m′

k′+qm |
2f hk′m′(1− f

h
k′+qm). (66)

Here εhkm is the hole energy with spin index m, J is the electron–hole exchange interaction matrix element (see Eq. (37)
in Section 2.9) and fh is the hole distribution function. As hole spin and momentum relax very fast, fh is taken as the hole
equilibriumdistribution. In bulk semiconductors, there are several factorswhich could help to reduce the above complicated
equation: (i) the heavy-hole density of states is much larger than the light-hole one (thanks to the much larger heavy-
hole effective mass), which makes the contribution to the spin relaxation rate mainly from the heavy hole; (ii) the heavy-
hole effective mass is much larger than the electron one, which enables the elastic scattering approximation. Using these
approximations and including only the short-range exchange interaction, one obtains a simple result for a nondegenerate
hole system [117]

τ−1s =
2
τ0
nha3B
〈vk〉

vB
, (67)

where aB is the exciton Bohr radius, 1/τ0 = (3π/64)∆E2SR/(EB)with EB being the exciton Bohr energy, nh is the hole density,
〈vk〉 = 〈k/me〉 is the average electron velocity, and vB = 1/(mRaB)withmR ≈ me being the reduced mass of the interacting
electron–hole pair. In the presence of localized holes, the equation is improved to be [117]

τ−1s =
2
τ0
NAa3B
〈vk〉

vB

(
nh
NA
+
5
3
NA − nh
NA

)
, (68)

where NA is the acceptor density. For a degenerate hole system [117],

τ−1s '
3
τ0
nha3B
〈vk〉

vB

kBT
EhF
, (69)

with EhF denoting the hole Fermi energy. In an interacting electron–hole plasma, electrons and holes attract each other and
there is an enhancement of the electron–hole exchange interaction due to this attraction. This enhancement is described by
the Sommerfeld factor. For an unscreened Coulomb potential, the Sommerfeld factor is |ψ(0)|2 = 2π

εk/EB
/[1− exp(− 2π

εk/EB
)].

With this factor, spin relaxation is enhanced, 1/τ ′s = |ψ(0)|
4/τs. However, for a completely screened Coulomb potential,

there is no enhancement, |ψ(0)|2 = 1. The effect of the Sommerfeld factor was discussed in Refs. [117,390]. It should



82 M.W. Wu et al. / Physics Reports 493 (2010) 61–236

be noted that the long-range electron–hole exchange interaction can not be neglected, often (such as in GaAs) it is more
important than the short-range one [110]. Hence the above analytical formulae is quite limited, unless ESR is substituted
by some proper average of the whole (both the short-range and the long-range) electron–hole exchange interaction. The
analytical expressions for the Bir–Aronov–Pikus spin relaxation in bulk materials and in quantum wells with both short-
range and long-range interactions are given in Ref. [390].
The spin relaxation rate due to the Bir–Aronov–Pikusmechanism is usually calculated via Eq. (66), which actually implies

the elastic scattering approximation [118,390,390,391]. Recently Zhou and Wu [109] reinvestigated the Bir–Aronov–Pikus
spin relaxation without such an approximation from the fully microscopic kinetic spin Bloch equation approach [44,334,
350]. They found that the spin relaxation rate was largely overestimated at low temperature in the previous theories.
The underlying physics is that at low temperature the Pauli blocking impedes spin–flip in fully occupied states [109]. The
spin–flip is only allowed around the chemical potential, which suppresses the Bir–Aronov–Pikus spin relaxation at low
temperature. Amo et al. found similar arguments and results [392].
Finally, holes also suffer the Bir–Aronov–Pikus spin relaxation. However, as hole spin–orbit coupling is strong, the

D’yakonov–Perel’ mechanism is very efficient and the Bir–Aronov–Pikusmechanism rarely shows up. The Bir–Aronov–Pikus
mechanismmay become important for holes in heavily n-doped quantumwells, where the D’yakonov–Perel’ mechanism is
suppressed by the hole-electron and hole–impurity scatterings and the spin lifetime can be rather long (&500 ps) [393–395].

3.2.4. g-tensor inhomogeneity
Under a givenmagnetic field, spin precession (both direction and frequency) is determined by the g-tensor. Margulis and

Margulis first proposed a spin relaxation mechanism in the presence of a magnetic field due to the momentum-dependent
g-factor [333]. Later Wu and Ning also pointed out that the energy-dependent g-factor gives rise to an inhomogeneous
broadening [334] in spin precession and hence results in spin relaxation.Without scattering the inhomogeneous broadening
only leads to a reversible spin relaxation. Any scattering, including the electron–electron scattering, which randomizes spin
precession, results in irreversible spin relaxation [334]. In the irreversible regime, under a magnetic field B along the j
direction, the relaxation rate of the spin component along the i direction [i, j = x, y, z] can be obtained in analogy with
Eq. (40),

1
τs,ii
= (µBB)2

∑
l6=i

(g2lj − glj
2)τc

1+ (µBB)2
∑
n6=l
gnj2τ 2c

. (70)

Here l, n = x, y, z, gij is the g-tensor and τc is the correlation time of spin precession limited by scattering. glj denotes the

ensemble average of glj. The above equationholds only in themotional narrowing regime, i.e., (µBB)
√∑

l6=i(g
2
lj − glj

2) τc � 1
for any i. In III–V or II–VI semiconductors and their nanostructures, the electron g-tensor is k-dependent [223,224], hence τc
is limited by momentum scattering (τc ' τp) [333,374].25 In the case of an isotropic g-tensor, the g-tensor inhomogeneity
only leads to spin relaxation transverse to the magnetic field. For example, in III–V or II–VI bulk semiconductors, the k-
dependent g-factor limited electron spin dephasing time is

T−12 ' (µBB)
2(g2 − g2)τp. (71)

It is noted that the induced spin dephasing rate increases with increasing magnetic field. The g-tensor inhomogeneity
mechanism usually dominates at high magnetic field [374].
Another limit is that there is no scattering or the scattering is very weak. In this case, the spin lifetime is limited by free

induction decay.26 In this regime, if the inhomogeneity of the g-tensor can be characterized by a Gaussian distribution, the
coherent spin precession leads to a Gaussian decay∼ exp(−t2/τ 2s ), with the spin lifetime being

1
τs,ii
'
µBB
√
2

√∑
l6=i

(g2lj − glj
2). (72)

In self-assembled quantum dot ensembles, the g-tensor inhomogeneity mechanism leads to efficient spin relaxation,
masking the intrinsic irreversible one [331,396,397]. However, such spin relaxation can be removed by spin echo or mode-
locking techniques in experiments [331]. The g-tensor inhomogeneity mechanism is also important for the spin relaxation
of localized electrons in n-type quantum wells [398] and localized holes in p-type quantum wells [399,400].27

25 If the g-tensor is only energy dependent, then τc is only limited by inelastic scattering.
26 Out of the strong scattering and no scattering limits, the spin lifetime is limited by both the free induction decay time and the irreversible spin relaxation
time.
27 The k-dependent hole g-factor in [001] quantum wells is given by Eq. (25).
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3.2.5. Hyperfine interaction
Recalling that the hyperfine interaction between electron spin and nuclear spins is

Hhf =
∑
i,ν

Aνv0|ψ(Ri)|2S · Ii,ν = h · S. (73)

Here ν labels both the atomic site in theWigner–Seitz cell and the isotopes, while i is the index of the cell. Aν is the coupling
constant of the hyperfine interaction. v0 is the volume of theWigner–Seitz cell andN0 = 1/v0.ψ(r) is the envelope function
of the electron wavefunction. h is the effective hyperfine field acting on electron spin, which is also called the Overhauser
field. The hyperfine interaction exchanges electron spin with nuclear spin and hence leads to electron spin relaxation.
There are different scenarios of the hyperfine interaction induced electron spin relaxation acting in several regimes. There

are four regimes: (i) the non-interacting spin ensemble without spin echo [38]; (ii) the non-interacting spin ensemble with
spin echo [38]; (iii) the hopping regime where electrons at different local sites are weakly connected; and (iv) the metallic
regime where most electrons are in extended states.
In regime (i), spins are separated in space or time and do not interact with each other, i.e., they evolve independently.

Examples are spins in a number of singly charged self-assembled quantum dots [401] and single spin in a quantum dot (or
two spins in a double quantum dot) measured at different times [38,402]. In this regime, the spin relaxation is determined
by the free induction decay due to the random local Overhauser field. For the quantum dots ensemble, each electron spin
in a quantum dot interacts with about 103–106 nuclear spins. According to central limit theorem, the distribution of the
Overhauser field is Gaussian

P(h) =
1

(2πσ 2h )3/2
exp(−h2/2σ 2h ). (74)

The variance σh is given by

σh =

√
1
3

∑
ν

A2ν Iν(Iν + 1)v0

∫
d3r|ψ(r)|4 = h1/

√
NL, (75)

where h1 =
√
2
3

∑
ν A2ν Iν(Iν + 1) and NL = 2/[v0

∫
dr|ψ(r)|4] is the effective number of the nuclei. Assume that the

Overhauser field is quasi-static, i.e., the Overhauser field fluctuates at the time scale much longer than the electron spin
lifetime [403]. Under such an approximation, the electron spin polarization decays as exp(−t2/τ 2s ), where the spin lifetime
is

τ−1s =
√
2σh. (76)

For NL ∼ 105, calculation gives a short spin lifetime on the time scale of 10 ns (1 µs) in GaAs (silicon) quantum dots.28
Electron spin relaxation under an external (static or time-dependent) magnetic field can be different from the zero field
case, but is still described well by averaging over spin precession under the coaction of the external and Overhauser field
with the distribution P(h) [301,403,405].29 It was proposed that high nuclear spin polarization [406] or state-narrowing
of the nuclear distribution [407,408] can markedly narrow the distribution of the Overhauser field and suppress the spin
relaxation. A recent experiment in a double quantum dot demonstrated the enhancement of the electron spin lifetime by a
factor of∼70 through polarizing the nuclear spins [409].
In regime (ii), the inhomogeneous broadening of the Overhauser field is removed by spin-echo. The spin relaxation is

then caused by the temporal fluctuation of the Overhauser field. The fluctuation is caused by the nuclear spin dynamics
due to the hyperfine interaction and nuclear spin dipole–dipole interaction. As nuclear spin relaxes much slower than
electron spin, the electron spin dynamics due to the hyperfine interaction is non-Markovian. Furthermore, the fluctuation
in a nuclear spin system is a many-body problem, where the collective excitation is not obvious. These factors make it
difficult to calculate the spin lifetime limited by the hyperfine interaction. Nevertheless, recent developments attacked the
problem via the equation of motion approach [344,410–413], the Green function approach [410,414,415] and the quantum
cluster expansion approach [289,416–422]. It was predicted theoretically that via designed magnetic pulses, the electron
spin coherence lost through the hyperfine interaction can be restored [423–431]. A recent experiment has confirmed the
theoretical prediction [432]. Other experimental investigations in regime (ii) involve: the study of the decay of spin echo
of a single spin in a quantum dot [402], two spins in a double quantum dot [38,433] and spins of donor bound electrons
in silicon [288]; the development of an optical mode-locking method to study the irreversible electron spin dephasing in
self-assembled quantum dots [331,434].

28 This timescale ismuch shorter than both the time scale of the nuclear spin precession under the hyperfine field generated by electron∼1µs (∼100µs)
and the nuclear spin–flip time due to the nuclear spin dipole–dipole interaction∼100µs (∼6000µs) in GaAs (silicon) [303,404], which justifies the quasi-
static treatment of the Overhauser field [403].
29 The magnetic field may also change the electronic wavefunction and hence the spin relaxation as NL depends on the wavefunction [301].
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Regime (iii) is the hopping regime where electrons at different local sites are weakly connected. The hopping between
the local sites induces the exchange interaction between electrons. The exchange interaction interrupts the spin precession
induced by the random local Overhauser field. If the exchange interaction is weak, the electron spin ensemble suffers both
the free induction decay and the irreversible spin decay due to the randomization caused by the exchange interaction. If
the exchange interaction is strong, the spin precession around the random local Overhauser field is motionally narrowed
[39,40,323,435]. An example of regime (iii) is the localized electron spin ensemble in the insulating phase of a n-doped
semiconductor.
The exchange interaction between electrons limits the correlation time τc of the spin precession due to the random

Overhauser field. In the following, we focus on the motional narrowing limit, which is also the focus in the literature. In this
limit, 〈ωhfτc〉 � 1 (〈. . .〉 denoting the electron ensemble average) with ωhf being the spin precession frequency due to the
hyperfine interaction. In this regime, the spin lifetime is given by [3,435]

τ−1s =
2
3
〈ω2hf〉τc . (77)

Here the prefactor 23 is due to the facts that only transverse fluctuation can lead to spin relaxation and that the angular
distribution of the fluctuation field is uniform. Roughly τc ' 1/〈Jij〉, where 〈Jij〉 is the averaged exchange coupling strength
with i and j being the site indices [39,40].
In regime (iv), themetallic regime,most of the electrons are extended andk is a good quantumnumber. In this regime, the

spin relaxation due to the hyperfine interaction is described as a spin–flip scattering. For example, in bulk semiconductors,
the spin lifetime due to the hyperfine interaction is given by [436],

τ−1s =

〈
1

τs(εk)

〉
=
me〈k〉
3π

ν0
∑
ν

βνA2ν Iν(Iν + 1). (78)

Here 〈k〉 =
∑

k kfk(1− fk)/
∑

k fk(1− fk) with fk the Fermi distribution. Calculation by Fishman and Lampel [436] in bulk
GaAs shows that the spin lifetime is on the order of 103–104 ns in the metallic regime, whereas the measured spin lifetime
is less than 300 ns [21,39]. Therefore the hyperfine interactionmechanism is irrelevant to the spin relaxation in themetallic
regime in bulk GaAs.
Hole spin relaxation due to the hyperfine interaction has attracted a lot of interest recently [116,301,437–440]. For

a long time, it was believed that holes interact weakly with nuclear spin and the hyperfine interaction is negligible
for the hole spin relaxation [3]. However, recent calculations indicated that the hole–nucleus hyperfine interaction is
only one order of magnitude smaller than the electron one [301], which still provides considerable effects on hole spin
relaxation [301]. In principle, the above discussions on electron spin relaxation due to the hyperfine interaction are also
applicable to hole systems. Differently, the heavy-hole hyperfine interaction in quantum wells is of the Ising form Hhhf =∑
i,ν A

h
νv0|ψ(Ri)|

2Sz Izi,ν (the z axis is along the growth direction). Consequently, the hole spin relaxation due to the hyperfine
interaction is different from the electron one: it is anisotropic [301]. Further studies on the hole spin relaxation due to the
hyperfine interaction, especially in quantumdotswhere hole spin is a promising candidate for qubits [441,442], are required.

3.2.6. Anisotropic exchange interaction
The anisotropic exchange interaction is an efficient spin relaxation mechanism in the insulating phase of doped

semiconductors [39,40,322–324,324,325,443,444]. The interaction comes from a correction to the Heisenberg exchange
interaction between carriers bound to adjacent dopants due to the spin–orbit coupling. It can be written as [40,322],

Hanex ≈ −Jij

[
sin(γij)

Eγij

γij
· (Si × Sj)+ (1− cos γij)

(
Eγij

γij
· Si
)(
Eγij

γij
· Sj
)]
, (79)

in which Jij is the isotropic exchange constant. Eγij is a vector due to spin–orbit coupling. It is estimated as Eγij ≈
me�SO(

√
2meEB

rij
rij
)rij/
√
2meEB, where�SO(k) is the spin precession frequency, EB > 0 is the electron binding energy and rij

is the vector connecting the positions of site i and j. The first term is the Dzhyaloshinskii–Moriya interaction and the second
one is the scalar exchange interaction. The scalar exchange interaction does not conserve the spin perpendicular to Eγij,
whereas the Dzhyaloshinskii–Moriya interaction does not conserve spin along any direction. Consequently the anisotropic
exchange interaction leads to decay of total carrier spin polarization [322]. As γij is usually very small in the insulating phase,
sin(γij) ≈ γij and 1− cos(γij) ≈ 1

2γ
2
ij . One should note that γij is proportional to the strength of the spin–orbit coupling.

In the insulating phase, electron spin precesses around the anisotropic exchange field produced by a randomly oriented
adjacent electron spin,which results in a random-walk-like spin precession. The correlation timeof spin precession is limited
by hopping time aswell as the isotropic exchange interactionwith adjacent electrons. The latter perturbs the spin precession
of individual electron but conserves the total spin polarization. Studies indicate that the latter is much more efficient than
the former in GaAs [40]. Hence an estimation of the correlation time is τc ≈ 1/〈Jij〉, and the spin precession frequency is
Ω ≈ 〈Jijγij〉. Therefore the spin relaxation time reads [40]

τ−1s ≈
2
3
〈Jij〉〈γij〉2. (80)
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Here the prefactor 23 is due to the facts that only transverse fluctuation can lead to spin relaxation and that the angular
distribution of the random exchange field is uniform (as the adjacent electron spins orient randomly). It should be noted
that the spin relaxation rate, which is∝ 〈γij〉2, is proportional to the square of the strength of the spin–orbit coupling.
The anisotropic exchange interaction mechanism has also been reviewed by Kavokin in Ref. [40], where many aspects

of spin relaxation of localized electrons were discussed. However, we note that there has not yet been a theoretical
study on the anisotropic exchange interaction for holes in the insulating phase. As the spin–orbit coupling is stronger,
one would expect that the anisotropic exchange interaction is more efficient in hole systems. Recently there have been
a few experimental studies [400,445,446] on hole spin relaxation in the insulating phase in two-dimensional hole systems.
Theoretical investigations on the role of the anisotropic exchange interaction in hole spin relaxation under experimental
conditions is desired.

3.2.7. Exchange interaction with magnetic impurities
In magnetic semiconductors, the exchange interaction with magnetic impurities can be an important source of the spin

relaxation. In (II, Mn) VI magnetic semiconductors, the s–d exchange interaction has been recognized as being responsible
for electron spin relaxation [447–450]. Recently, it was found that in p-type paramagnetic GaMnAs quantum wells, the s–d
exchange interaction dominates electron spin relaxation at low temperature [111]. In general, the spin relaxation due to
the s–d (p–d) exchange interaction is similar to that due to the hyperfine interaction. There can be several regimes, where
different scenarios take place. However, there are only two regimeswhich are commonly encountered: the insulating regime
where most carriers are localized, and the metallic regime where most carriers are extended. In the insulating regime, the
exchange interaction with randomly oriented magnetic impurity spins induces random spin precessions. There are several
processes interrupting such random spin precessions: (i) exchange interaction between carriers; (ii) carrier hopping; (iii)
fluctuation or diffusion of the magnetic impurity spins. These processes limit the correlation time τc of the random spin
precession. If τc is small, so that 〈Ωs(p)–d〉τc � 1 (Ωs(p)–d is the spin precession frequency due to the s(p)–d exchange
interaction and 〈. . .〉 represents the ensemble average). In this regime, the spin relaxation rate reads

τ−1s =
2
3
〈Ω2s(p)–d〉τc . (81)

In the metallic regime, spin relaxation rate is given by the Fermi Golden rule. For example, in a bulk system, the electron
spin relaxation rate is [451,452]

τ−1s =
me〈k〉
3π

J2sdNMSM(SM + 1), (82)

where Jsd is the s–d exchange constant, NM is the density of magnetic ions with spin SM , 〈k〉 =
∑

k kfk(1− fk)/
∑

k fk(1− fk)
with fk being the Fermi distribution. The hole spin relaxation rate due to the p–d exchange interaction can also be calculated
via the Fermi Golden rule, only that the spectrum and the eigenspinor are more complicated. In principle, the same scheme
is applicable to electrons (holes) in nanostructures [448].

3.2.8. Other spin relaxation mechanisms
The main remaining spin relaxation mechanisms are various spin–phonon interactions (except those which have

been grouped into the Elliott–Yafet mechanism). Generally the origin of the spin–phonon interactions is that when spin
interactions depend on the positions of atomic ions (both host and dopant), lattice vibration couples directlywith spin. There
are several such kinds of spin interactions, such as the strain-induced spin–orbit coupling and the hyperfine interaction.
Strain also modifies the g-tensor [453]. All such lattice dependent spin interactions can be the origin of the spin–phonon
interactions [453–458]. In a nanostructure, the gate-voltage and structure inducedmodification of spin–orbit coupling [113]
and the g-tensor [81,113] further induce more spin–phonon interactions [344,457]. Besides, spin mixing associated with
spin-independent phonon scattering also leads to the spin–flip phonon scattering. For example, for localized electronswhich
are bound to impurities or confined in quantum dots, the spin–orbit coupling and the hyperfine interaction can induce spin
mixing and enable spin–flip electron–phonon scattering [344,459].
In the existing literature, there are many studies on the spin–phonon interaction induced spin relaxation. Most of them

focus on spin relaxation of donor-bound electrons [324,453,460–463] and electrons/holes in quantum dots [343,344,454–
460,464–492]. A comprehensive study of electron spin relaxation/dephasing due to various spin–phonon interactions in
GaAs quantum dots is presented in Ref. [344]. The spin–phonon scatterings are usually limited by the electron–phonon
scattering rate and the effect of the spin–orbit interaction. It was believed that they are unimportant in the metallic regime.
The relative importance of different spin–phonon interactions are compared for various conditions in GaAs quantum dots
[344] and in Si/Ge quantum dots [486]. Among those spin–phonon interactions, the phonon induced g-tensor fluctuation
was found to be irrelevant in GaAs quantum dots [344], whereas it is important in Si/Ge quantum dots [486]. Finally, the
gate noise can also lead to spin relaxation in gated quantum dots in the presence of the hyperfine interaction, spin–orbit
interaction or electron–electron exchange interaction [493,494].
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3.2.9. Relative efficiency of spin relaxation mechanisms in bulk semiconductors
In this subsection, we briefly discuss and review the relative efficiency of various spin relaxation mechanisms. We give

some rough discussions based on the analytical formulae which are based on some approximations.30 For simplicity, we
restrict the discussion here to bulk III–V semiconductors. The situation in III–V semiconductor nanostructures or II–VI
semiconductors and their nanostructuresmay be different. Nevertheless, some insight can be gained from these discussions.
We also comment on hole spin relaxation and carrier spin relaxation in centrosymmetric semiconductors such as silicon and
germanium.
For spin relaxation in bulk III–V semiconductors in the insulating regime, as stated before, the anisotropic exchange

interaction dominates at high doping density, whereas the hyperfine interaction dominates at low doping density. In the
metallic regime, the spin relaxation mechanisms are the D’yakonov–Perel’, the Elliott–Yafet and the Bir–Aronov–Pikus
mechanisms. In n-doped semiconductors the Bir–Aronov–Pikus mechanism is ineffective due to the lack of holes. Hence
the relevant mechanisms are the Elliott–Yafet and the D’yakonov–Perel’ mechanisms. From Eqs. (53) and (62), the ratio of
the spin lifetimes due to the Elliott–Yafet and the D’yakonov–Perel’ mechanisms in bulk III–V semiconductors is given by
[110,117],

τEY

τDP
≈ A1

(
me
mcv

)2
〈εk〉τ

2
p Eg

(1− η/3)
(1− η/2)2

, (83)

where the prefactor A1 ∼ 1. It is inferred from the above expression that the Elliott–Yafet spin relaxation is more important
in semiconductors with smaller Eg , such as InAs and InSb. The factor 〈εk〉τ 2p indicates that the Elliott–Yafet mechanism is
more important at lower temperature with higher impurity density.
In p-type and intrinsic semiconductors the relative efficiencies of the Bir–Aronov–Pikus and the D’yakonov–Perel’

mechanisms are always compared. The Bir–Aronov–Pikusmechanism is believed to be important for high hole density at low
temperature [21,117]. In such a case the hole system is degenerate, thus it is meaningful to compare the D’yakonov–Perel’
and the Bir–Aronov–Pikus mechanisms for degenerate holes. From Eqs. (62) and (69) one finds

τBAP

τDP
≈ A2τpτ0

〈εk〉
5/2E1/2B
Eg

(
me
mcv

)2
η2

1− η/3
1
nha3B

EhF
kBT

, (84)

where the prefactor A2 ∼ 1 and EhF is the hole Fermi energy. It is seen from the above formula that the Bir–Aronov–Pikus
mechanism ismore important in semiconductors with larger band gap Eg , smaller spin–orbit interaction (i.e., smaller η) and
stronger electron–hole exchange interaction (i.e., smaller τ0). From the above equation, one finds four controlling factors:
τp, 〈εk〉, nh and T (Note that EhF ∼ n

2/3
h ). The Bir–Aronov–Pikus mechanism is more important at higher hole/impurity

density and lower electron density. For nondegenerate electrons, as 〈εk〉 ∼ kBT , the Bir–Aronov–Pikus mechanism is more
important at low temperature. However, for degenerate electrons, the Bir–Aronov–Pikus mechanism is more important
at high temperature, as 〈εk〉 ∼ EF. Such qualitative different behavior for nondegenerate and degenerate electrons was
illustrated in a recent study [110] (see also Section 5.6).
The Elliott–Yafet mechanism can be comparable to the Bir–Aronov–Pikus mechanism in p-type semiconductors. The

ratio of the two spin lifetimes for degenerate holes is

τEY

τBAP
≈ A3

τp

τ0
nha3B

E2g
E1/2B 〈εk〉3/2

1
η2

(
1− η/3
1− η/2

)2 kBT
EhF
, (85)

where A3 ∼ 1. According to the above equation, the Elliott–Yafet mechanism is more important in semiconductors
with larger τ0 (i.e., weaker electron–hole exchange interaction), smaller band-gap Eg and larger η (i.e., larger spin–orbit
interaction). Hence the Elliott–Yafet mechanism may exceed the Bir–Aronov–Pikus mechanism in semiconductors with
small band-gap and large spin–orbit interaction, such as InSb and InAs. For a given material, the Elliott–Yafet mechanism
is more important at stronger momentum scattering (i.e., smaller τp) and lower hole density. For degenerate electrons, the
Elliott–Yafet mechanism is more important at larger electron density and lower temperature, as 〈εk〉 ∼ EF. However, for
nondegenerate electrons, the Elliott–Yafet mechanism is more important at higher temperature, as 〈εk〉 ∼ kBT .
In brief, some understanding of the topic can be obtained from the above discussions. Nevertheless, as there are many

approximations in these formulae, they can not give a picture of the whole parameter range. In some cases the many-body
effects which are absent in the above analysis play an important role. Moreover, the relative efficiency relies strongly on the
genuine material parameters. Only a realistic calculation can fully resolve the problem. A systematic calculation from the
fully microscopic kinetic spin Bloch equation approach by Jiang and Wu [110] indicated that the Elliott–Yafet mechanism
is less important than the D’yakonov–Perel’ mechanism in all parameter regimes in n-type bulk III–V semiconductors in

30 Besides competition, there is also some cooperation between different spin relaxation mechanisms. For example, spin–flip momentum scatterings
due to the Elliott–Yafet, the Bir–Aronov–Pikus, the s(p)–d exchange interaction and other mechanisms also lead to the randomization of momentum, they
thus contribute to the D’yakonov–Perel’ spin relaxation as well. However, as these spin–flip momentum scatterings are usually much weaker than the
spin-conserving ones, they only lead to a small modification of the D’yakonov–Perel’ spin relaxation [109,111].
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the metallic regime. In the same work, the Bir–Aronov–Pikus mechanismwas found to be unimportant in intrinsic samples,
whereas it dominates spin relaxation in p-type samples at low temperature and high hole density when the electron density
is low. However, the Bir–Aronov–Pikus mechanism is ineffective when the electron density is high [110]. It was also found
via the same approach that in intrinsic or p-type GaAs quantum wells when the electron density is comparable with the
hole density, the Bir–Aronov–Pikus mechanism is unimportant [109]. In a recent work [112], the relative importance of the
Bir–Aronov–Pikus mechanism and the D’yakonov–Perel’ mechanism in p-type GaAs quantum wells was comprehensively
compared. Systematic comparisons of various spin relaxation mechanisms in paramagnetic GaMnAs quantum wells were
performed in Ref. [111], also via the kinetic spin Bloch equation approach.
Finally, in centrosymmetric semiconductors, such as silicon and germanium, the situation is totally different. In the

bulk system, as the spin–orbit coupling term in conduction band vanishes, the D’yakonov–Perel’ mechanism is absent in
electron spin relaxation. Hence in n-type bulk silicon and germanium, the Elliott–Yafet mechanism dominates electron
spin relaxation in the metallic regime [21,22,362]. In the insulating regime, electron spin relaxation is dominated by other
mechanisms such as the hyperfine interaction and the spin–phonon interaction [289,453,461,463]. In nanostructures,
which break the centro-inversion symmetry, spin–orbit coupling term shows up [291,294,295]. Experiments indicated
that in silicon quantum wells the D’yakonov–Perel’ mechanism is dominant in the high mobility regime, whereas the
Elliott–Yafet mechanism is more important in the lowmobility regime [297]. Due to the nature of the indirect band, optical
spin orientation is not easily accessible. Hence electron spin dynamics was studied only in n-type systems, whereas the
hole spin dynamics was studied in p-type systems. In p-type systems, like the situation in III–V semiconductors, hole
spin–orbit coupling in the Luttinger Hamiltonian is large and the D’yakonov–Perel’ mechanism is believed to be dominant.
The D’yakonov–Perel’ mechanism also dominates hole spin relaxation in nanostructures of silicon and germanium [299].

4. Spin relaxation: experimental studies and single-particle theories

The study of spin lifetime and spin diffusion length is one of the central focuses in spintronics. Many papers have
been written on the subject in recent decades. Recent development of spin grating measurement gives new insight into
spin diffusion [13,33,495], while spin noise spectroscopy enables measurement of the intrinsic carrier spin lifetime with
negligible disturbance on the carrier system [496–499]. Also the latest technique of tomographic Kerr rotation achieves
spin state tomography [500]. We expect that these new experimental techniques will inspire and enable more important
findings.
In this section we review the experimental studies and single-particle theories on spin relaxation and dephasing times.

Here, the term ‘‘single-particle theory’’ refers to the theory where the carrier–carrier scattering is not considered. It will be
shown in the next section that the carrier–carrier scattering plays an important role in spin relaxation. We focus on spin
relaxation in III–V and II–VI semiconductors, where the bulk inversion asymmetry induced spin–orbit coupling plays an
important role. Spin relaxation in centrosymmetric semiconductors, such as silicon and germanium, is also reviewed. The
discussions in the previous section will be used frequently.

4.1. Carrier spin relaxation at low temperature in the insulating regime

Carriers in semiconductors are mostly ionized from dopants. At low temperature, dopants can trap those carriers. When
the doping density is low, carriers are bound to isolated dopants and the system behaves as an insulator. At elevated doping
density, the carrier system becomes metallic following the metal–insulator transition at some critical density nc . In the
metallic regime the carrier transport is band-like, whereas in insulating regime it is dominated by carrier hopping. It is then
easy to understand that the relevant carrier spin relaxation mechanisms in the insulating regime are different from those in
the metallic regime. In this subsection, we review spin relaxation at low temperature in the insulating regime. Remarkably,
the longest spin lifetimes in GaAs was reported as τs ' 300 ns [501,502] at zero magnetic field. At high magnetic field in
lightly dopedGaAs, the spin lifetime can reach τs ' 19µs [503]. In high purity GaAs, the spin relaxation time of donor-bound
electrons can be as long as several milliseconds [504].31
It has been identified that spin relaxation in the insulating regime is dominated by the anisotropic exchange interaction

mechanism at high doping density and by the hyperfine interaction mechanism at low doping density, at zero magnetic
field [39,40,323]. If

∑
f

√
〈ω2f 〉τc � 1, spin relaxation rate is given by [3,435]

τ−1s '
∑
f

2
3
〈ω2f 〉τc, (86)

where ωf is the electron spin precession frequency due to the random effective magnetic field. The index f denotes the
mechanism leading to the random fields: it can be the hyperfine interaction with the nuclei and the anisotropic exchange
interaction with adjacent electrons. 〈. . .〉 represents the ensemble average. τc is the correlation time of the random spin

31 The ensemble spin dephasing time (T ∗2 ' 5 ns [505]) and irreversible spin dephasing time (T2 = 7µs [506]) aremuch shorter under the same condition.



88 M.W. Wu et al. / Physics Reports 493 (2010) 61–236

precessions. τc can be limited by a disturbance of the electron spin state or the random fieldωf . Realistic calculation indicated
that in GaAs τc is mainly limited by the former due to the isotropic exchange interaction [39,40].32 Therefore τc ' 1/〈Jij〉,
where Jij is the isotropic exchange coupling constant between i and j donor-bound electrons. The average of Jij is taken over
the donor configuration. The spin relaxation rate due to the anisotropic exchange interaction is then given by (see also Eq.
(80))

τ−1s ≈
2
3
〈Jij〉〈γij〉2, (87)

where γij is the spin precession angle during the tunnel hopping from the i to j donor site (see Section 3.2.6). The hyperfine
interaction-limited spin lifetime is

τ−1s '
2
3
σ 2h
1
〈Jij〉

, (88)

where σh (given by Eq. (75)) is the variance of the Overhauser field. It is noted that the spin relaxation rates due to the
two mechanisms have different dependences on 〈Jij〉. Naively, it is expected that 〈Jij〉 increases with decreasing inter-donor
distance (i.e., increasing doping density). It is then easy to understand that the anisotropic exchange interaction dominates
spin relaxation at high doping density, whereas the hyperfine interaction dominates at low doping density [39,40,323]. For
hydrogen-like centers, the exchange coupling constant is given by [325]

Jij ' 0.82
e2

4πε0κ0a

( rij
a

)5/2
exp

(
−
2rij
a

)
, (89)

where a is the Bohr radius of the hydrogen-like wavefunction. It is noted that the dependence on inter-donor distance rij is
exponential.33
Usually both localized and free (extended) electrons coexist and they are also coupled by exchange interactions. It was

found that the exchange coupling between the localized and free electrons is so efficient that the two share a common spin
lifetime [40,324,508]. The spin relaxation rate of the whole electron system is then given by [324],

τ−1s = τ
−1
ls nl/(nl + nf )+ τ

−1
fs nf /(nl + nf ), (90)

where nl and nf are the densities of localized and free electrons, respectively. τls and τfs are the spin lifetimes of localized
and free electrons, separately. In many cases spin relaxation is dominated by localized electrons, as they have a much faster
spin relaxation rate [40,324]. Furthermore, the exchange interaction between free and localized electrons can also limit τc
and elongate the spin lifetime [501,502]. The effect of electron localization on spin relaxation in n-doped quantum wells,
especially in symmetric (110) quantum wells, was discussed in a recent theoretical work [509].
In the presence of a magnetic field, the situation becomes much more complicated [40,510]. First, the magnetic field

reduces the isotropic exchange coupling (as the wavefunction becomes more localized) and hence increases τc [40]. The
anisotropic exchange interaction is also reduced. Second, spin relaxation due to the random spin precession is slowed down
by the magnetic field parallel to spin polarization (see Eq. (40)). Third, spin relaxation due to g-tensor inhomogeneity
increases with the magnetic field. Fourth, at high magnetic field, spin–flip electron–phonon scattering may come into
play [383]. All these factors complicate themagnetic field dependence of the spin relaxation. Up till now, there has been little
discussion on the problem [40,510]. Experimental results on the magnetic field dependence of spin lifetime are available
in Ref. [511]. Yet the observed magnetic field dependence has still to be explained by theory [511]. Before turning to
experimental studies, it should be mentioned that to date there have only been a few theoretical works on spin relaxation
in the insulating regime [39,40,322–324,324,325,443,507,510,512,513], more studies are needed. In particular, hole spin
relaxation in the insulating regime was discussed only in Ref. [399] where only the g-factor fluctuation mechanism was
studied.
We now review the experimental studies on carrier spin relaxation at low temperature in the insulating regime. Many

efforts have been devoted to the spin relaxation in n-GaAs at low temperature [4,39,144,321,497,501–503,511,514–521].
In one of the seminal works, by Kikkawa and Awschalom [4], a surprisingly long spin lifetime (130 ns) was observed in
n-GaAs, which sheds light on the possibility of semiconductor spintronics. This, together with the observation of a very long
spin diffusion length (100 µm) in GaAs [5] as well as the progress on spin injection into semiconductors [522,523], caused
excitement and led to the rapid rise of the field of semiconductor spintronics. Interestingly, most of these works were done
in bulk n-GaAs with a doping density of 1016 cm−3.
Dzhioev et al. [39] measured, in a wide range (1014–1019 cm−3), the doping density dependence of spin lifetime at low

temperature T ≤ 5 K.34 The results are presented in Fig. 1. The spin lifetime first increases before reaching its first maximum

32 In fact such a disturbance of electron spin state can be viewed as spin diffusion in a network coupled by the isotropic exchange interaction [40]. From
the random-walk theory, τc is related to the spin diffusion constant Ds as τc ' (3n

2/3
D Ds)

−1 [40].
33 As stated in the previous footnote, τc is actually limited by spin diffusion due to exchange coupling in the network of randomly distributed donors.
In some clusters where the inter-donor distance is shorter than the average one, spin diffusion becomes much faster due to the exponential dependence.
Therefore this kind of cluster serves as easy passages of spin diffusion. At low doping density spin diffusion is dominated by such kinds of small cluster. In
this case the spin diffusion should be treated with percolation theory [40]. Such kinds of study were performed in Refs. [40,507].
34 A similar investigation in CdTe was performed in a recent work [524].
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Fig. 1. Spin lifetime τs (�, ◦, � and •) and spin correlation time τc (4) as function of donor concentration nD in n-GaAs. Solid curves: theoretical calculation
of τs . Dotted curve: theoretical calculation of τc due to exchange interaction between adjacent electrons. The vertical dashed lines indicate the positions of
the peaks of the spin lifetime. In particular, the dashed line at nD = 2× 1016 cm−3 also denotes the metal–insulator transition. The hyperfine interaction,
the anisotropic exchange interaction and the D’yakonov–Perel’ mechanisms dominate the spin relaxation in the low,medium, high doping density regimes
respectively, as indicated in the figure. From Dzhioev et al. [39].

at doping density nD ' 3× 1015 cm−3; it then decreases with doping density; around the metal–insulator transition point
at doping density nD = 2 × 1016 cm−3, the spin lifetime increases rapidly and reaches its second maximum; after that
(i.e., in the metallic regime) the spin lifetime decreases monotonically with doping density. This intricate behavior is due
to the different spin relaxation mechanisms in the metallic and insulating regimes. In the metallic regime, spin relaxation
is dominated by the D’yakonov–Perel’ mechanism where τ−1s ∼ 〈ε

3
k〉τp. At such low temperatures, the electron system is

degenerate. Hence τp ∼ nD/k3F ∼ n
0
D (according to the Brooks–Herring formula) and 〈ε

3
k〉 ∼ n

2
D. Therefore τs decreases

with doping density nD as τs ∼ n−2D . In the insulating regime, the D’yakonov–Perel’ mechanism is irrelevant. The relevant
spin relaxationmechanisms are the anisotropic exchange interaction (at high doping density) and the hyperfine interaction
(at low doping density). As indicated by Eqs. (87) and (88), spin relaxations due to these two mechanisms have different
doping density dependences (as 〈Jij〉 increases with increasing doping density). Therefore, their competition leads to the
non-monotonic doping density dependence: the spin lifetime first increases then decreases with increasing doping density.
It is noted in the figure that the measured τc decreases with increasing doping density, which agrees with the theory as
τc ' 1/〈Jij〉.
It was demonstrated by Dzhioev et al. that different spin relaxation scenarios can be invoked by optical pumping [501,

502]. At low concentration spin relaxation is limited by the hyperfine interaction mechanism, where the spin lifetime is
τs = 5 ns. The authors showed that by injecting additional electrons, the exchange interaction between those electrons and
the donor-bound electrons motionally narrows the random spin precession caused by the hyperfine interaction. The spin
lifetime is then elongated to τs = 300 ns.35
Recently, Schreiber et al. studied energy resolved electron spin relaxation in n-GaAs near the metal–insulator transition

[519]. They found that there are three components in the time-resolved Kerr rotation under a magnetic field parallel to the
surface by examining the spin precession frequency aswell as the spin lifetime. The different precession frequencies indicate
that those components should be attributed to electrons at different energy states. The sequential emergence of the three
components confirms such a hypothesis. The authors attributed these three states as: delocalized states in the donor band,
localized states in the tail of the donor band and free electron states in the conduction band. The authors also found that the
absolute value of the g-factor in the localized states in the donor band tails is smaller than those in the other two states.
The magnetic field and temperature dependences of spin relaxation time in lightly doped n-GaAs were measured

systematically by Colton et al. in Refs. [503,511]. The main results are shown in Fig. 2. Surprisingly a complicated non-
monotonic magnetic field dependence was observed: the spin lifetime first increases (B < 2–2.5 T) then decreases
(2–2.5 < B < 3–4 T) and further increases (B > 3–4 T) with increasing magnetic field [511]. Moreover, the spin

35 As the photo-excited electrons may affect the spin relaxation significantly at low temperature in the insulating regime [40,501,502], it is important
to reexamine the spin relaxation times obtained by Hanle, or Faraday/Kerr measurements via the spin noise spectroscopy method. Such a study has been
done by Römer et al. in Ref. [520], where the spin relaxation times measured by different methods are compared in very dilute doped (nD = 1014 cm−3),
low doped (nD = 2.7× 1015 cm−3), and doping close to metal–insulator transition (nD = 1.8× 1016 cm−3) samples.
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Fig. 2. Left: Spin lifetime T1 as function of magnetic field at various temperatures (a) T = 1.5 and 5 K; (b) T = 1.5, 5, 6.5, 8 and 12 K. Right: Spin lifetime
T1 as function of temperature for various magnetic field. All temperature dependences can be fitted to T1 ∼ T−1.57 , as indicated by the thin solid lines.
Doping density is nD = 1015 cm−3 . From Colton et al. [511].

lifetime decreases rapidly with increasing temperature. For 1 < T < 20 K and 0.5 ≤ B ≤ 2.5 T, it exhibits a power
law τs ∼ T−1.57 [511]. The underlying physics is still unclear [40,511]. Recently, the temperature dependence of the spin
lifetime in quantum wells was studied carefully in Refs. [445,525,526]. In these works, differently, it was found that the
temperature dependence of the electron (hole) spin lifetime is quite weak for T < 5 K (T < 2 K). At higher temperature,
the spin lifetime decreases dramatically with increasing temperature. It was proposed that the excited localized states
from thermal activation, which have much shorter spin lifetimes than the ground states, are responsible for the observed
phenomena [526]. The temperature dependence of spin lifetime in the insulating regime was also studied theoretically in
Refs. [40,507].
The electric field dependence of the spin lifetime in the insulating regime also reflects the characteristics of electron

localization. Furis et al. measured such a dependence [527]. Their results showed that the spin lifetime varies slowly with
electric field in the linear transport regime. However, after the threshold field of impact ionization, the spin lifetime drops
rapidly with electric field. At such threshold, the free electrons get enough energy from the electric field to ionize the
localized electrons [527]. After the localized electrons become free and the electron system acquires enough energy to
become a hot electron system, the D’yakonov–Perel’ spin relaxation is accelerated. The spin lifetime hence drops rapidly.
The density dependence of the spin lifetime in two-dimensional electron systems was studied by Sandhu et al. [528]

and Chen et al. [398] (see Fig. 3), where a metal–insulator transition is involved. In the work of Sandhu et al., the
metal–insulator transition was demarcated by conductivity [528]. Differently Chen et al. revealed the metal–insulator
transition by determining the density of states at the band edge via g-factor measurement [398]. In GaAs the g-factor has
an energy dependence g(ε) = gc + βε. Therefore at zero (low) temperature the density of states D(ε) is written as

D(ε) = β
(
dg∗

dn

)−1
, (91)

where g∗ is the measured (ensemble averaged) g-factor and n is the electron density. By measuring the density dependence
of g∗, Chen et al. obtained the density of states near the band edge (see Fig. 3) where the tail reveals the existence of localized
states. Electron localization also manifests itself in the magnetic field dependence of spin lifetime: the spin dephasing rate
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Fig. 3. Up: Spin relaxation time as function of HeNe laser excitation intensity (HeNe intensity). Inset indicatesmagnetic field dependence of spin relaxation
rate for different HeNe laser intensities (solid lines denote the fittings according to Eq. (92)). Down: The (a)measured and (b) calculated g-factor as function
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in the insulating regime was found to follow

1
T ∗2 (B)

=
1
T ∗2 (0)

+
∆gµBB
√
2
, (92)

due to the g-factor inhomogeneity and localization.36 A similar dependence was also found in other two-dimensional
structures at low temperature [529–531], two-dimensional hole systems [400,531] and in ZnSe epilayers close to the
GaAs/ZnSe interface [532]. In the localized regime, the electron (hole) spin lifetime in two-dimensional system is very long.
Usually electron spin lifetime is of the order of nanoseconds to microseconds [445,531,533,534], whereas the hole spin
lifetime can reach nanoseconds [445,446]. As the temperature increases, the spin lifetime decreases due to delocalization
and enhancement of the D’yakonov–Perel’ spin relaxation, which increases with electron kinetic energy [400,445,525,535,
536]. The pumpdensity dependence of spin lifetimewas studied in Refs. [534,535]where spin lifetimewas found to decrease
with pump density at T < 2 K, similar to that in bulk materials in the insulating regime [4,39,518]. The underlying physics
is similar to the temperature dependence: the increasing pump density leads to an increase of electron density as well as
the thermalization of the electron system, and enhances spin relaxation.
Spin relaxation in type-II quantum wells was studied in both GaAs and ZnSe quantum wells at very low temperature

[537,538]. As electrons and holes are spatially separated, the electron–hole exchange interaction is weakened and the spin

36 In themetallic regime the spin relaxation rate either decreases with increasingmagnetic field or varies as [1/T ∗2 (B)−1/T
∗

2 (0)] ∼ B
2 due to the g-factor

inhomogeneity.
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relaxation time is elongated. In particular, in a GaAs type-II quantum well, the electron spin lifetime can be as long as 7 µs
at 1.7 K [537].
Recently, Korn et al. observed an extremely long hole spin lifetime,' 70 ns, in a two-dimensional hole system in (001)

quantum wells at 0.4 K [446]. They also observed the decrease of hole spin lifetime with increasing magnetic field roughly
following Eq. (92). The low-field (∼0.2 T) spin lifetime was observed to decrease by about one order of magnitude when the
temperature increases from 0.4 to 4.5 K. Interestingly, spin relaxation of localized holes due to the hyperfine interaction can
be inhibited by a very small in-plane magnetic field (∼10 mT) due to the Ising form of the hole hyperfine interaction [301].
Also, the g-tensor inhomogeneity mechanism is not dominant at small (but still much larger than 10 mT) magnetic field
[446]. Hence the most likely spin relaxation mechanism at such magnetic field is the anisotropic exchange interaction
mechanism.
Finally, it should be mentioned that dynamic nuclear polarization is more efficient in the insulating regime than in the

metallic regime because the hyperfine interaction plays a more important role in electron spin relaxation in the insulating
regime. The dynamic nuclear spin polarization, in turn, affects the electron spin dynamics. Experimental studies involve
continuous [3,302] and time-resolved [311,539–541] measurements of electron spin dynamics to reveal the nuclear spin
dynamics.

4.2. Carrier spin relaxation in the metallic regime

At high temperature and/or high density, the carrier system is in the metallic regime where most of the carriers are
in extended states in the conduction/valence band with k being a good quantum number. The relevant spin relaxation
mechanisms in the metallic regime are the Elliott–Yafet, the D’yakonov–Perel’ and the Bir–Aronov–Pikus mechanisms.
In the presence of a magnetic field, the g-tensor inhomogeneity mechanism can also be important [374]. Their relative
efficiencies differ in various materials and structures. The different temperature, mobility and carrier density dependences
of these mechanisms, together with their competition, result in the various behaviors observed in experiments. In this
subsection, we review electron/hole spin relaxation in the metallic regime in both bulk semiconductors and semiconductor
nanostructures.37 We focus on the experiments and single-particle theories, whereas the many-body theory is also
mentioned briefly when it is necessary to understand the experimental results. A review of the many-body theory and
its salient predictions and results is presented in the next section.

4.2.1. Electron spin relaxation in n-type bulk III–V and II–VI semiconductors
As there are few holes, the Bir–Aronov–Pikus mechanism is irrelevant in n-type III–V and II–VI semiconductors.

Relevant mechanisms are the D’yakonov–Perel’ and Elliott–Yafet mechanisms. As has been shown in recent work [110],
the Elliott–Yafet mechanism is less important than the D’yakonov–Perel’ mechanism in n-type III–V semiconductors, even
in narrow band-gap semiconductors such as InAs and InSb. We neglect the Elliott–Yafet mechanism in the subsequent
discussions. A simple theory of the D’yakonov–Perel’ spin relaxation in bulk system has been presented in Section 3.2.2
[21,117]. The main result is

τ−1DP ' Q τpα
2
〈ε3k〉/Eg . (93)

Q ∼ 1. In the presence of magnetic field, the g-tensor inhomogeneity mechanism also works [374],

τ−1s ' (µBB)
2(g2 − g2)τp. (94)

The g-tensor is assumed to be isotropic. The above equations should be taken only qualitatively, as they are based on a
series of approximations and assumptions which are to be justified. From these equations the qualitative behavior of spin
relaxation can be understood. To achieve such an understanding, the knowledge of momentum scattering time τp is needed.
In n-type III–V and II–VI semiconductors, momentum scattering mainly consists of the impurity, phonon, electron–electron
scatterings. In earlier theories based on the single particle approach, the electron–electron scattering is considered irrelevant
to spin relaxation.38 Moreover, the acoustic phonon and transverse-optical phonon scatterings are negligible. Therefore,
the important scattering mechanisms are the ionized-impurity scattering and the longitudinal-optical-phonon scattering.
According to the Brooks–Herring formula, the temperature and density dependence of ionized-impurity scattering time
is [21] τ eip ∼ T

3/2n−1D (nD is doping density) for T � TF (nondegenerate regime) and τ eip ∼ T
0n0D for T � TF (degenerate

regime). Based on these dependences, for the D’yakonov–Perel’ spin relaxation due to the ionized-impurity scattering,
τs ∼ T−9/2nD in the nondegenerate regime and τs ∼ T 0n−2D in the degenerate regime. For spin relaxation due to the g-tensor
inhomogeneitymechanism associatedwith the ionized-impurity scattering, roughly, τs ∼ B−2T−7/2nD in the nondegenerate
regime and τs ∼ B−2T 0n

−4/3
D in the degenerate regime. The longitudinal-optical-phonon scattering is only important at high

37 The experiments and the corresponding theory of electron spin relaxation in p-type bulk semiconductors are summarized in the seminal book ‘‘Optical
Orientation’’ [3]. We will not review this topic here.
38 In fact, electron–electron scattering plays an important role in the D’yakonov–Perel’ spin relaxation in n-type bulk III–V semiconductors, as was shown
by Jiang and Wu in Ref. [110].
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Fig. 4. Temperature dependence of the spin lifetime for bulk n-GaAs at B = 0 and B = 4 T with doping density nD = 1016 cm−3 . The dotted and dashed
curves represent the calculated D’yakonov–Perel’ (DP) and Elliott–Yafet (EY) spin lifetimes respectively. From Kikkawa and Awschalom [4].

temperature kBT & ωLO/4 (ωLO is the longitudinal-optical-phonon frequency). For example, in GaAs longitudinal-optical-
phonon scattering is important only at T & 100K. The temperature and density dependences of longitudinal-optical-phonon
scattering are complex. Roughly, the longitudinal-optical-phonon scattering rate increases with temperature but varies
weakly with density.39
We first review the experimental works. Let us start with the temperature dependence of spin lifetime. Spin lifetimewas

measured as function of temperature in GaAs [4,371,520,543], GaSb [544], GaN [545–548], InAs [549–552], InSb [551,553],
InP [554], ZnSe [555], ZnO [556], CdTe [524] and HgCdTe [557,558]. It was found to decrease with increasing temperature
at high temperature (nondegenerate regime) in all these works (e.g., see Fig. 4).40 This is consistent with the discussion in
the above paragraph: τs ∼ T−9/2 for ionized-impurity scattering. For longitudinal-optical-phonon scattering, as τ−1p varies
slower than 1/〈ε3k〉 ∼ T

−3, τs still decreases with temperature. It was observed that at high density in the degenerate regime
the spin lifetime varies slowly with temperature [544,555,560]. This is understood as that in degenerate regime the ionized-
impurity scattering and longitudinal-optical-phonon scattering times, as well as 〈εk〉, vary slowly with temperature [see
Eq. (93)).
The magnetic field dependence of spin lifetime was studied in GaAs [4,517,561] and GaN [255,545]. As indicated in

Section 3.2.2, the spin lifetimedue to theD’yakonov–Perel’mechanism increaseswith increasingmagnetic field. On the other
hand, the spin lifetime due to the g-tensor inhomogeneity mechanism decreases with increasing magnetic field. These two
mechanisms compete with each other, hence the spin lifetime first increases then decreases with increasing magnetic field
[374]. The peakmagnetic field Bp roughly satisfies α2〈ε3k〉/Eg ' (µBBp)

2(g2−g2). In III–V and II–VI bulk semiconductors the
electron g-factor is energy-dependent g ' gc + βεk, hence (g2 − g2) ∼ 〈ε2k〉. Therefore, the peak magnetic field Bp ∼ 〈εk〉,
which increases with the average energy. Typical experimental results are shown in Fig. 5. It is seen that for the undoped
sample the spin lifetime first increases and then decreaseswith increasingmagnetic field. For B > 1 T, at lowdensity the spin
lifetime decreases with magnetic field whereas at high density it increases with magnetic field. This is easily understood,
since 〈εk〉 is larger at high density, the peak Bp moves to higher magnetic field [374].
The variation of spin lifetime with mobility has been investigated in GaAs [371] and InAs [550] at zero magnetic field.41

In GaAs, the spin relaxation rate was found to increase with mobility, which is consistent with the D’yakonov–Perel’
mechanism. However, the simple formula, e.g., Eq. (63) in Section 3.2.2, can not explain the results qualitatively [371] (see
Fig. 6). Momentum scattering that does not contribute to mobility was suggested to be responsible for the smaller spin
relaxation rate in the high mobility regime [371].
The photo-excitation density dependence of spin lifetime was investigated in n-type GaAs [4,562,563], GaSb [544] and

InAs [552]. In all these measurements, the spin lifetime was found to decrease with excitation density in n-doped samples.
The decrease was unexplained in some works [4,562] or was assigned to the Elliott–Yafet mechanism [552]. Other works

39 Dyson and Ridley calculated the longitudinal-optical-phonon scattering time for a nondegenerate electron system. They found that in the
nondegenerate regime the longitudinal-optical-phonon scattering rate increases with electron energy and temperature [542].
40 At low temperature the system may be insulating, where spin relaxation is governed by localized electrons [324,559].
41 The magnetic field is always zero in this subsection unless otherwise specified.



94 M.W. Wu et al. / Physics Reports 493 (2010) 61–236

Fig. 5. Magnetic field B dependence of ensemble spin dephasing time T ∗2 for bulk GaAs at various doping densities at temperature T = 5 K. Experimental
data from Kikkawa and Awschalom [4] (re-plotted by Žutić et al. [21]).
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Fig. 6. Mobility dependence of spin relaxation rate in bulk n-GaAs at temperature T = 77 K. Experimental results are represented by dots. Solid lines:
calculation from 1/τs = Q1τpα2(kBT )3/Eg with Q1 = 3 (scattering by phonons, upper straight line) and Q1 = 1.5 (scattering by ionized impurities, lower
straight line). Triangles: calculation with 1/τs = Q1τpα2(kBT )3/Eg using τp measured from spin-relaxation suppression in the Faraday geometry, assuming
scattering by phonons (O), and ionized impurities (4). Inset: Density dependence of the spin relaxation rate (s. r. rate). Nd and Na denote the donor and
acceptor densities respectively. Data point (◦) is taken from Ref. [4] at T = 100 K. Solid curve is a guide to the eyes. From Dzhioev et al. [371].

explained the decrease as a result of thermalization of the electron system via photo-excitation [544]. The decrease of spin
lifetime may be due to the increase of 〈ε3k〉 as the electron density increases. However, the thermalization effect may also
play an important role.42
The doping density dependencewas studied in GaAs [4,39,371] and InAs [549]. In all theseworks the spin relaxation time

was found to decreasewith doping density in the degenerate regime. There has been little data in the nondegenerate regime
to date [4,549]. The decrease of spin lifetime in the degenerate regime is understood as follows: in the degenerate regime

42 The thermalization effect was shown to be crucial in a recent fully microscopic calculation [564]. This is also supported by the experimental results
that the spin lifetime was observed to decrease with the photon energy of the pump laser [543,565,566].
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the ionized-impurity scattering time and longitudinal-optical-phonon scattering time vary slowly with density, whereas
〈ε3k〉 ∼ n

2
D increases with density. Therefore the spin lifetime τs ∼ 1/(〈ε

3
k〉τp) decreases with density.

The electric field dependencewas studied inGaAs [527,567], ZnO [568] andGaN [548]. Usually, the spin lifetimedecreases
with increasing electric field in the metallic regime in GaAs [527,567]. This is because the electric field induces electron
drift and the hot-electron effect, which increase the average electron energy and then enhance the D’yakonov–Perel’ spin
relaxation [110]. However, the hot-electron effect also gives rise to the enhancement of momentum scattering [569], which
leads to the suppression of the D’yakonov–Perel’ spin relaxation. These two effects compete with each other [569]. It was
found that in the case of cubic-k spin–orbit coupling, the former effect dominates because the spin lifetime varies rapidly
with the electron energy [110,570]. The spin lifetime hence decreaseswith increasing electric field [110,570]. This is the case
for bulk GaAs. The situation is more complicated in the case of linear-k spin–orbit coupling: the spin lifetime first increases
due to the enhancement of momentum scattering then decreases due to the increase of electron energy [569]. This is the
case for bulk wurzite ZnO, where Ghosh et al. observed that the spin lifetime first increases then decreases with increasing
electric field [568]. Usually the effect of electric field on spin relaxation is more pronounced at low temperature [110,
372,527,548,568]. The spin lifetime can also be reduced by applying strain, which induces additional spin–orbit coupling
[144,145,571,572]. It was found that 1/τs ∼ ε2, where ε is the applied stress [572] when the strain-induced spin–orbit
coupling dominates. Under the strain field the temperature and density dependence of spin relaxation becomes weaker as
the strain-induced spin–orbit coupling is linear in k (see Eq. (7)). It is also found that the spin relaxation can be anisotropic
under strain [572].
In wurzite GaN and ZnO, the spin–orbit coupling is different from that in zinc-blende semiconductors. The spin–orbit

coupling in the conduction band reads

HeSO = [�
R
e (k)+ �

D
e (k)] · σ/2 (95)

with

�Re (k) = 2αe(ky,−kx, 0), �De (k) = 2γe(bk
2
z − k

2
‖
)(ky,−kx, 0). (96)

It is seen that the symmetry of the spin–orbit coupling is quite different from that of the Dresselhaus one. Unlike in bulk
GaAs, electron spin relaxation in bulk GaN is anisotropic. The lifetime of spins along the [0001] direction is smaller than
those along other directions. The anisotropy of spin relaxation was demonstrated in recent experiment [255].
The spin lifetime τs at room temperature is also of concern due to interest in possible device application. It wasmeasured

in GaAs [543,573], with τs in the range of 15–110 ps, in InAs [552,574,575], with τs in the range of 2–24 ps and in InSb [551,
553,558], with τs in the range of 2–300 ps, depending on the doping density.
We now review the single-particle theory on electron spin relaxation in n-type bulk III–V and II–VI semiconductors.

Besides the early works in 1970s and early 1980s, which have been summarized in the book ‘‘Optical Orientation’’ [3],
there are also many theoretical studies in the past decade after the rise of semiconductor spintronics [576]. These studies
try to go beyond the widely used formulae for the D’yakonov–Perel’ (Eqs. (62) and (63)) and Elliott–Yafet (Eq. (53))
spin relaxation [117]. These developments follow the same paradigm: calculate spin–orbit coupling and scattering via
microscopic theory and then average the spin relaxation rate at different k as

τ−1s =

∫
dk (f ↑k − f

↓

k )τ
−1
s (k)∫

dk (f ↑k − f
↓

k )
. (97)

The spin relaxation rate at different k, τ−1s (k), due to the D’yakonov–Perel’ mechanism is given in Eq. (58), while that due to
the Elliott–Yafet mechanism is given by

τ−1s (k) =
∑
k′
[Γ (k ↑, k′ ↓)+ Γ (k ↓, k′ ↑)], (98)

with Γ (k ↑, k′ ↓) and Γ (k ↓, k′ ↑) denoting the spin–flip scattering rates. Such a paradigm was first applied to n-type
bulk GaAs, InAs and GaSb by Lau et al. where the spin–orbit coupling was calculated via the fourteen-band k ·p theory [577].
Themomentum scattering rates due to the electron–impurity and electron–phonon scattering were calculated via standard
methods in transport theory. Similar schemes were then applied to bulk GaAs and GaN by Krishnamurthy et al. [578]. Later
the scheme was developed to the case of arbitrary band structure by Yu et al. [209].43 The role of scattering by dislocations
in both the D’yakonov–Perel’ and Elliott–Yafet spin relaxation was studied by Jena within such a scheme [579]. A systematic
study on spin relaxation in III–V semiconductors based on such paradigm was given by Song and Kim [108]. However, in
their work the Boltzmann statistics was assumed, which makes the discussion at low temperature and/or high density
meaningless. The Elliott–Yafet spin relaxation due to the electron–electron scattering was studied in Refs. [580,581] within
such a paradigm. Recently spin relaxation in ZnOdue to theD’yakonov–Perel’ and Elliott–Yafetmechanismswas also studied

43 In this work, the approach that the authors used to calculate hole spin relaxation rate seems to have some problem, as they concluded that the hole
spin relaxation is dominated by the Elliott–Yafet mechanism, which is not true.
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in such a paradigm [559]. An improvement of the paradigmwas given in Ref. [582]. In thatwork, itwas argued that the strong
scattering condition 〈Ω(k)〉τp � 1 may not be satisfied for large k, as both 〈Ω(k)〉 and τp increase with k. Hence the spin
relaxation rate should be modified to include the free induction decay as [582]

1
τ ′s (k)

=

(
τs(εk)+

√
128Eg

αε
3/2
k

)−1
. (99)

The spin relaxation rate of the electron ensemble is then obtained by averaging over k via Eq. (97). A closer examination
on the D’yakonov–Perel’ spin relaxation due to the electron–longitudinal-optical-phonon scattering from the equation
of motion was given in Ref. [542], where it was shown that the elastic scattering approximation can have problems
in treating the longitudinal-optical-phonon scattering to spin relaxation. The effect of the electron–longitudinal-optical-
phonon scattering on the D’yakonov–Perel’ spin relaxationmay not be characterized by a single momentum scattering time
used in the paradigm. Spin relaxation due to the D’yakonov–Perel’ mechanism under an electric field was studied via the
Monte Carlo method in Ref. [583], where spin lifetime was found to decrease with the electric field.

4.2.2. Electron spin relaxation in intrinsic bulk III–V and II–VI semiconductors
In intrinsic semiconductors electrons are generated together with an equal number of holes by photo excitation. Due to

the large number of holes, the Bir–Aronov–Pikus mechanism is now relevant to the spin relaxation. As has been pointed out
in Ref. [110], the Elliott–Yafet mechanism is unimportant in intrinsic III–V semiconductors. A similar conclusion should
also hold for II–VI semiconductors. Hence, the relevant spin relaxation mechanisms are the Bir–Aronov–Pikus and the
D’yakonov–Perel’ mechanisms. There has been a debate about the relative importance of these twomechanisms in intrinsic
III–V and II–VI semiconductors [21,390,392,584–586]. Single-particle theory based on the elastic scattering approximation
comes to the conclusion that spin relaxation due to the Bir–Aronov–Pikus mechanism can be more important at low
temperature and high hole density [390]. However, as pointed out by Zhou and Wu [109], the Pauli blocking of electrons
at low temperature and/or high hole density largely reduces the Bir–Aronov–Pikus spin relaxation from a fully microscopic
kinetic spin Bloch equation approach [44,334,350]. Later, Jiang and Wu showed that in intrinsic bulk III–V semiconductors
the Bir–Aronov–Pikus mechanism is unimportant, via the same approach [110], where a similar conclusion should also
hold for II–VI semiconductors. Therefore, the relevant spin relaxation mechanism is the D’yakonov–Perel’ mechanism. Spin
relaxation in intrinsic bulk III–V and II–VI semiconductors can then be understood easily.
Experimental studies on spin relaxation in intrinsic semiconductors involve temperature dependence [229,582,587,

588] and density dependence [566,582,585]. The temperature dependence coincides with that predicted by theory: the
spin lifetime varies slowly in the degenerate regime and then decreases rapidly in the nondegenerate regime with
increasing temperature. The density dependence, however, indicates an interesting behavior: the spin lifetime increases
with electron density [582]. This is totally different from what is observed in n-type semiconductors, where the spin
lifetime decreases with electron density [4,39,371]. However, in intrinsic semiconductors, the main scattering mechanisms
are the carrier–carrier scattering and the longitudinal-optical-phonon scattering, which makes spin relaxation difficult
to understand via the single-particle theory. From the many-body kinetic spin Bloch equation approach [44,334,350],
Jiang and Wu found a non-monotonic density dependence of spin lifetime due to the non-monotonic density dependence
of the carrier–carrier scattering rate: in the nondegenerate regime the carrier–carrier scattering rate increases with
increasing density whereas in the degenerate regime it decreases with increasing density [110]. After their prediction, Teng
et al. observed in intrinsic bulk GaAs that at high excitation density (ne > 1017 cm−3) the spin lifetime decreases with
density [585]. However, Teng et al. assigned the decrease of spin lifetime to the Bir–Aronov–Pikus mechanism, which is
wrong (see comment [589]). Later Ma et al. observed such a non-monotonic density dependence of spin lifetime in bulk
CdTe [566].44

4.2.3. Electron spin relaxation in n-type and intrinsic III–V and II–VI semiconductor two-dimensional structures
As it was found in n-type and intrinsic bulk III–V and II–VI semiconductors that spin relaxation is dominated by

the D’yakonov–Perel’ mechanism, it is reasonable to believe that the same conclusion holds for the two-dimensional
case. Indeed, calculations showed that the Elliott–Yafet mechanism is unimportant in GaAs and InGaAs quantum wells
[111,591,592].45 Fullymicroscopicmany-body kinetic spin Bloch equation calculations indicated that the Bir–Aronov–Pikus
mechanism is ineffective in intrinsic GaAs quantum wells [109].46 This evidence enables us to focus on spin relaxation due
to the D’yakonov–Perel’ mechanism.

44 They, however, assigned the decrease of the spin lifetime with increasing density to the Elliott–Yafet mechanism, which is incorrect (see
comment [590]).
45 In narrow bandgap semiconductor InSb quantum wells, experiment gives some evidence that the Elliott–Yafet spin relaxation can be more important
than the D’yakonov–Perel’ one in lowmobility samples, as revealed by Litvinenko et al. in Ref. [593]. Nevertheless, the twomechanisms are still comparable
in their experiment.
46 However, in some wide bandgap semiconductors which have weak spin–orbit coupling and a strong electron–hole exchange interaction, the
Bir–Aronov–Pikus mechanism can be important in intrinsic samples, especially when excitons are formed. Such is the situation in ZnSe [594]. Also in
some special cases where the D’yakonov–Perel’ mechanism is suppressed, the Bir–Aronov–Pikus or the Elliott–Yafet mechanisms may be important, such
as in (110) quantum wells [595]. We will return to these special cases after the discussion of the common cases.
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Anisotropic spin relaxation
One of the salient features of D’yakonov–Perel’ spin relaxation in two-dimensional structures (quantum wells and

heterostructures) is that it varies significantly with the growth direction and the structure. The former originates from
tailoring the symmetry of the Dresselhaus spin–orbit coupling by the growth direction. The latter partly comes from the fact
that the strength of the linear Dresselhaus term can be tuned by quantum confinement. Moreover, the Rashba spin–orbit
coupling also appears in asymmetric two-dimensional structures. The joint effect of the Dresselhaus and the Rashba
spin–orbit couplings leads to anisotropic spin relaxation. The strength of the Rashba spin–orbit coupling can be controlled
by the gate voltage. The tunability of spin relaxation opens a route to a variety of new phenomena and functionalities
[22,596].
Let us start with the spin–orbit coupling, which is crucial to the D’yakonov–Perel’ spin relaxation. Assume that the

confinement is strong enough so that only the lowest subband is involved. Consider a simple case: the (001) quantumwell,
where the Dresselhaus spin–orbit coupling is

HD = βD(−kxσx + kyσy)+ γD(kxk2yσx − kyk
2
xσy). (100)

βD = γD〈ψ1|k̂2z |ψ1〉 where ψ1 is the envelope function of the lowest subband and k̂z = −i∂z . βD ∼ γD(π/a)
2 with a being

the well width. The Rashba spin–orbit coupling reads

HR = αR(kyσx − kxσy). (101)

For narrow quantum well when k2 � (π/a)2 (k = (kx, ky) is the in-plane wavevector), the linear term dominates

HSOC = (αRky − βDkx)σx + (−αRkx + βDky)σy. (102)

It was first pointed out by Averkiev and Golub [194] that the spin relaxation is anisotropic when the Rashba and Dresselhaus
spin–orbit couplings compete with each other. The spin relaxation tensor is then

τ−1zz = 2τ
−1
xx = 2τ

−1
yy = 8m〈τpεk〉(α

2
R + β

2
D), τ−1xy = −8m〈τpεk〉αRβD. (103)

Diagonalizing the spin relaxation tensor, one obtains

τ−1zz = 8m〈τpεk〉(α
2
R + β

2
D), τ−1

±±
= 4m〈τpεk〉(αR ∓ βD)2, (104)

where the principal axes are n± = 1
√
2
(1,±1, 0) and the z-axis. It is meaningful to rewrite the spin–orbit coupling in these

principal axes,

HSOC = (αR − βD)k+σ− − (αR + βD)k−σ+. (105)

Recall that τ−1ij ∼ [Ω2δij−ΩiΩj]. As averaging over angle k+k− = 0 and k
2
+ = k2−, one readily finds that 1/τ++ ∼ (αR−βD)2,

1/τ−− ∼ (αR + βD)2, 1/τ+− = 0 and 1/τzz ∼ 2(α2R + β
2
D). If αR = βD (αR = −βD), 1/τ++ = 0 (1/τ−− = 0), i.e., the spin

lifetime is infinite along n+ (n−). However, taking into account the cubic Dresselhaus term, the spin lifetime along this
particular direction is finite but still much larger than that along other directions [597]. Therefore spin relaxation is highly
anisotropic when αR ' ±βD [196,370].
Experimentally, as only the spin polarization along the quantumwell growth direction can bemeasured,47 spin relaxation

anisotropy is revealed indirectly by comparing spin relaxation rates along the z direction in the two cases with themagnetic
field along the [110] and [11̄0] directions. When a moderate magnetic field is along the [110] direction, spin polarization
along the growth direction evolves as

Sz(t) = Sz(0) exp
[
−
1
2
(τ−1zz + τ

−1
−−
)t
]
cos(ω0t + φ0). (106)

The observed envelope decay rate is 12 (τ
−1
zz + τ

−1
−−). Applying the magnetic field along the [11̄0] direction, one obtains a

decay rate of 12 (τ
−1
zz + τ

−1
++). Comparing these two, one can obtain spin lifetimes τ++ and τ−− and the ratio |αR/βD| can be

extracted.48 The spin relaxation anisotropy in (001) quantumwells was first observed by Averkiev et al. [198] via the Hanle
measurements, and then by several groups via time-resolvedmeasurements [66,199,598,599]. Among theseworks, the spin
relaxation anisotropy was demonstrated to be controlled/affected by density [598], magnetic field [199], gate-voltage (see
Fig. 7) [599,600] and temperature [66,598]. The symmetry of the spin–orbit coupling in other two-dimensional structures
with different growth directions also has amarked effect on spin relaxation. In some particular cases, such as (111) and (110)
quantum wells, spin relaxation can be largely suppressed. As there are also many papers on those topics, we will discuss
them in detail later, while below we only focus on (001) quantum wells.

47 Note that a recently developed technique of tomographic Kerr rotation can measure spin polarization in other directions [500].
48 Actually, via such method, one can determine the ratio but one is not sure whether it is |αR/βD| or |βD/αR| [198].
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Fig. 7. Polar plot of the spin dephasing time measured as a function of the angle (in degree) between the magnetic field and the [110] axis at four applied
biases U in coupled double quantum wells. The spin dephasing time at each angle is represented by the distance to the center of the polar coordinates.
Experimental data are shown by points; theoretical values are presented by solid curves. The ratio of the Rashba spin–orbit coupling parameter α to the
Dresselhaus one β , α/β , extracted from the anisotropy of spin dephasing time is also presented in each figure. The values∆E represent the exciton Stark
shifts for the given biases U . Temperature is T = 2 K. From Larionov and Golub [599].

Spin relaxation in (001) quantum wells
Widely concerned topics are the temperature, density, mobility, excitation density, magnetic field, gate-voltage and

quantum subband quantization energy dependences of spin relaxation. These dependences reveal intriguing underlying
physics and provide important knowledge for spintronic device design. Belowwe first review experimental studies and then
the single-particle theories. To benefit the understanding, we first present some simple analytical results which assume only
elastic scattering in the strong scattering regime [196]

τ−1z = 4
〈[
τ̃1(α

2
R + β̃

2
D)k

2
+ τ̃3γ

2
D k
6/16

]〉
, τ−1

±
= 2

〈[
τ̃1(αR ∓ β̃D)

2k2 + τ̃3γ 2D k
6/16

]〉
, (107)

Here τi (i = z,+,−) denotes the relaxation time of the spin component along i direction and 〈. . .〉 represents the average
defined by Eq. (97). β̃D = βD− 14γDk

2. It is noted that when the linear spin–orbit coupling dominates, the spin lifetime varies
as 1/〈τpεk〉, which changes slowly with temperature and density. However, when the cubic term becomes important, the
spin lifetime can vary as 1/〈τpε2k〉 or 1/〈τpε

3
k〉. In the latter case, spin relaxation varies rapidly with density and temperature.

• Temperature dependence. In experiments, the temperature dependence was measured in the metallic regime in
Refs. [66,367,591,593,601–604]. In heavily-doped (lowmobility) quantumwells, the spin lifetime decreases with increasing
temperature. A good example is the experiment of Ohno et al. [602] (Fig. 8). In heavily-doped quantumwells, themomentum
scattering is dominated by the electron–impurity scattering, except that at high temperature the electron–longitudinal-
optical-phonon scattering may become more important. When the electron–impurity scattering dominates, as both τp and
〈εk〉 increase with temperature, the spin lifetime decreases with increasing temperature rapidly. At high temperature the
rise of electron–longitudinal-optical-phonon scattering slows down the decrease, or even leads to an increase, of the spin
lifetime with increasing temperature.
In undoped quantum wells, Malinowski et al. [603] presented a systematic study on electron spin relaxation. The main

results are shown in Fig. 9. It is seen that the temperature dependence of spin relaxation rate varies greatly with quantum
well width. At small well width, the spin relaxation rate changes slowly with temperature, whereas at large well width,
it increases rapidly with temperature. The temperature dependence can be fitted roughly as ∼ T 0 for narrow quantum
wells and ∼ T 2 for wide quantum wells. The authors explained this as longitudinal-optical-phonon scattering dominating
at high temperature for undoped quantum wells, roughly τp ∼ T−1 [178]. For narrow quantum wells, the spin relaxation
rate τ−1s ∼ τp〈εk〉 ∼ T

0, whereas for wide quantum wells τ−1s ∼ τp〈ε
3
k〉 ∼ T

2. It is noted that in wide quantum wells, the
increase of the spin relaxation rate is still slower than that in bulk samples at low temperature, which indicates the crossover
of the leading spin–orbit coupling from a linear term to a cubic term with increasing temperature.
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Fig. 8. Temperature T dependence of electron spin relaxation time τs for n-doped (001) GaAs/AlGaAs quantum wells with well width 7.5 nm. Electron
density is 4 × 1010 cm−2 in each quantum well. Dotted curve is the calculated result of spin lifetime based on the D’yakonov–Perel’ theory. From Ohno
et al. [602].
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Fig. 9. Temperature dependence of spin relaxation rate for undoped (001) GaAs/AlGaAs quantum wells with various well widths. �: well width 6 nm; •:
well width 10 nm;�: well width 15 nm; H: well width 20 nm. Solid curve is a fit with 1/τs ∼ T 2 dependence. Dashed curve represents the data in intrinsic
bulk GaAs by Maruschak et al. (as reproduced in Ref. [3]). From Malinowski et al. [603].

In high mobility two-dimensional electron systems at sufficiently low temperature the momentum scattering can be
very weak. In this situation, the D’yakonov–Perel’ spin relaxation is in the weak scattering regime, where spin polarization
shows precessional decay [367,368]. Brand et al. observed the transition from the precessional decay regime to themotional-
narrowing regime [368]. As spin lifetime changes from τs ∼ τ−1p in the motional-narrowing regime to τs ∼ τp in the
precessional decay regime, the temperature dependence of spin lifetime has a turning point around the transition.49 This
was observed in experiment by Leyland et al. (see Fig. 10) [367]. Several works on the temperature dependence of spin
relaxation in high mobility two-dimensional electron systems revealed the importance of the electron–electron scattering
to spin relaxation [367,591,604,605]. This important issue will be reviewed in the framework of the many-body theory in
Section 5.
• Excitation density dependence. The excitation density dependence of spin relaxation was investigated in Refs. [66,514,

606–612]. Interestingly, it was discovered that the spin lifetime decreases with excitation density at low temperature in
n-doped quantumwells [66,608,610]. At room temperature in undoped quantumwells, Aleksiejunas et al. found that at low
density the spin lifetime increases with excitation density whereas at high density it decreases (see Fig. 11) [607]. Moreover,
Teng et al. observed a peak in the density dependence at room temperature in undoped quantumwells [609]. As in intrinsic

49 Such behavior also exists in hole spin relaxation in Si/Ge quantum wells, as reported by Zhang and Wu in Ref. [299].
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Fig. 10. Temperature dependence of spin lifetime for sample (a) (well width 20 nm, electron density 1.8×1011 cm−2) and (b) (well width 10 nm, electron
density 3.1 × 1011 cm−2). The curves are guides for the eyes. Open circles and squares are spin-lifetimes measured in the high temperature regime
where spin evolution is exponential. Solid symbols are values of (|Ω(kF )|2τ ∗p )

−1 (denoted in the figure as (〈Ω2〉τ ∗p )
−1) (Ω(kF ) is obtained from analysis

of the spin evolution in the low-temperature oscillatory regime. τ ∗p is the momentum scattering time including the electron–electron scattering.). Open
triangles are the decay time constant of the oscillatory spin evolution, t0 , obtained by fitting the experimental data with oscillatory exponential decay
Sz(t) = S0 exp(−t/t0) cos(ωt + φ). Arrows indicate the value of |Ω(kF )|−1 for each sample, corresponding to the condition |Ω(kF )|τp ' 1. From Leyland
et al. [367].
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Fig. 11. Excitation density dependence of the spin lifetime τs in undoped (001) InGaAs multiple quantum wells at room temperature. From Aleksiejunas
et al. [607].

quantum wells the dominant scatterings are the many-body electron–electron and electron–hole Coulomb scatterings,
the results can not be explained in the framework of a single-particle approach. Nevertheless, many-body theories have
revealed the underlying physics: the electron–electron and electron–hole Coulomb scatterings increase with density in the
nondegenerate (low density) regime, whereas they decrease in the degenerate (high density) regime [110,111,299,613]. The
non-monotonic density dependence of these many-body carrier–carrier Coulomb scatterings results in the non-monotonic
density dependence of the spin lifetime [110,111,299,613].
•Mobility dependence. Spin lifetime as a function ofmobilityµ(∝ τp)was studied in Refs. [607,614] at room temperature,

where the qualitative relation τs ∼ µ−1 was observed, which signals the D’yakonov–Perel’ spin relaxation mechanism.
However, Brand et al. found that in high mobility two-dimensional electron systems at low temperature (T < 100 K), the
spin lifetime deviates from τs ∼ µ−1 largely [368]. Electron–electron scattering is proved to be the key to understanding the
observed results.50 In highmobility two-dimensional electron systems at low temperature, the electron–electron scattering
is the dominant scattering, as other scatterings (the electron–impurity and electron–phonon scatterings) are weak. As
it randomizes the momentum, the electron–electron scattering also contributes to the D’yakonov–Perel’ spin relaxation.
However, since the electron–electron scattering does not contribute to mobility, τs ∼ µ−1 no longer holds. The total
momentum scattering timewith the electron–electron scattering included, τ ∗p , is thenmuch smaller than that deduced from
mobility, τp (see Fig. 12). At room temperature, the electron–longitudinal-optical-phonon scattering becomes the strongest
momentum scattering, which also limits the mobility, hence the relation τs ∼ µ−1 is recovered.
• Quantumwell width dependence. The quantumwell width dependence of spin relaxation was investigated in Refs. [592,

602,603,614,616–619]. All these studies were performed at room temperature in the nondegenerate regime. In this regime,

50 This was first predicted theoretically by Wu and Ning [332,334] and later by Glazov and Ivchenko [615].
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2
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by neglecting the cubic Dresselhaus term and the Rashba term and assuming infinite well depth, the spin lifetime is given
by [369] τs = Eg/(2α2E21ekBTτp) with α = 2γD

√
2m3eEg and E1e being the electron subband quantization energy. It hence

gives τs ∼ E−21e . Most experimental data roughly agree with the relation. For example, Tackeuchi et al. fitted τs ∼ E
−2.2
1e

for a multiple GaAs/AlGaAs quantum well [616]. However, there are some situations where results deviate largely from
the above relation [614]. Britton et al. reported that for small E1e, the relation largely deviates whereas for large E1e, the
spin lifetime generally shows the quadratic behavior [618]. A similar result was obtained by Malinowski et al. [603] and is
shown in Fig. 13. It is seen that for medium E1e, the relation agrees well with experimental results. At small E1e as the cubic
Dresselhaus spin–orbit coupling plays an important role, the relation deviates from the data. At large E1e as thewavefunction
penetration is non-negligible and the infinite-depth-well assumption no longer holds, the relation also deviates from the
experimental results.
• Magnetic field dependence. Spin lifetime has also been measured as function of magnetic field in quantum wells in

the metallic regime in Refs. [66,199,326,525,620,621]. There are two special configurations of magnetic field: one where
the magnetic field lies in the quantum well plane (the Voigt configuration) and the other where the magnetic field is
perpendicular to the well plane (the Faraday configuration). In the Voigt configuration, the orbital effect of magnetic field
is negligible. In this case the magnetic field has two consequences on spin relaxation: first it mixes the in-plane and out-of-
plane spin relaxations due to the Larmor precession; second the Larmor spin precession slows down the spin relaxation by
a factor of (1 + ω2L τ

2
p ). In usual conditions ωLτp . 0.1 (e.g., B = 2 T and τp = 1 ps in GaAs yield ωLτp = 0.05), thus the

second effect is weak. The first effect is usually more important as the in-plane and out-of-plane spin lifetimes differ largely.
The effect of mixing saturates soon at a low magnetic field around 0.1 T. This is consistent with experiments: the magnetic
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field dependence is usually more pronounced at low field [66,199,620], whereas at high field the dependence becomes
weak [525]. In asymmetric quantum wells the in-plane spin relaxation can be quite anisotropic. In this case the effect of
magnetic field depends largely on its direction [66,198,199,598,599]. Interestingly, Stich et al. found that the magnetic
field dependence of spin lifetime for B ‖ [110] exhibits a minimum whereas the magnetic dependence for B ‖ [11̄0]
shows a maximum for an asymmetric (001) quantum well [199]. In the Faraday configuration with the magnetic field
perpendicular to the quantum well plane, the orbital effect induces cyclotron motion, which has an important effect on
spin relaxation. As the cyclotron frequency is much larger than the Larmor frequency (in GaAs ωc ' 70ωL), the cyclotron
motion effectively suppresses the spin relaxation. This phenomena was observed by Sih et al. in a InGaAs/GaAs quantum
well (See Fig. 14) [621].51 At higher magnetic field and low temperature, spin lifetime oscillates with magnetic field, as the
Landau level filling affects both the spin precession and momentum scattering. Finally in materials with a strong energy
dependence of the g-factor (e.g., in narrow band-gap semiconductors) at high magnetic field, the g-tensor inhomogeneity
mechanism can be important. In InGaAs quantum wells, spin relaxation was observed to first increase and then decrease
with increasing magnetic field for an in-plane magnetic field [623]. The increase is due to the mixing of out-of-plane and
in-plane spin relaxations, whereas the decrease can be attributed to the g-factor inhomogeneity spin relaxationmechanism.

• Gate-voltage dependence. The spin relaxation can also be tuned by the gate-voltage [525,599]. The gate-voltage may
have several consequences on spin relaxation. First it changes the electron density. Second it changes the Rashba spin–orbit
coupling. The modification of the envelope function along the growth direction further changes the linear Dresselhaus
spin–orbit coupling. Third it may change the mobility. Hence the underlying mechanism for the gate-voltage dependence
of the spin lifetime is complex.
• Initial spin polarization dependence. Initial spin polarization dependencewas studied by Stich et al. [41,42,326]where the

spin relaxation rate decreases with initial spin polarization as predicted by Weng and Wu [44]. The underlying physics will
be reviewed in the next section on the kinetic spin Bloch equation approach [44,334,350] where the Coulomb Hartree–Fock
term acts as an effective magnetic field in spin precession [44]. This effective magnetic field is always along the spin
polarization direction. Realistic calculations from the kinetic spin Bloch equations indicated that the induced magnetic
field can be as large as tens of Tesla [44]. Such a large longitudinal effective magnetic field largely suppresses the spin
relaxation. Besides spin relaxation, experimentalists also found evidence of the effective magnetic field in the sign change
of the Kerr rotation [327]. Recently the Coulomb Hartree–Fock effective magnetic field was again discussed in the issue of
spin accumulation [43].
• Excitation photon energy dependence and others. The excitation photon energy dependence of spin relaxation was

investigated in Ref. [605], where an energy-dependent momentum scattering time due to the electron–electron scattering
was revealed. Spin dynamics in higher subbands was studied in Refs. [624–626], indicating the important role of
intersubband momentum scattering. Spin dynamics under a microwave driving field was discussed in Ref. [627].

51 Also observed in a Si/Ge quantum well by Wilamowski and Jantsch [622].
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• Interface inversion asymmetry induced spin relaxation. The interface inversion asymmetry induced spin–orbit coupling
and its consequence to spin relaxation were studied in Refs. [219,221,222].52 As was reviewed in Section 2.4, in the case
where the quantum well and the barrier materials share no common atom, interface inversion asymmetry is exhibited
even in symmetric quantum wells. Interface inversion asymmetry induced spin–orbit coupling is important in narrow
quantum wells. By comparison with the case with a common atom and the same well width, it was discovered that spin
relaxation in quantum wells without a common atom is always shorter [219,221,617]. This effect is especially marked in
narrow quantum wells. It can not be explained by the D’yakonov–Perel’ theory taking into account only the Dresselhaus
spin–orbit coupling [617]. As in the [110]-grown quantum well, the two interfaces could be symmetric even in the case
without a common atom, which gives a special casewithout the interface-induced spin–orbit coupling [222]. By comparing
spin relaxation in a [110]-grownquantumwell and a [001]-grownquantumwellwith samewellwidth, one can also estimate
the value of interface-induced spin–orbit coupling [222].
• Spin relaxation in diluted nitride materials. Spin relaxation in diluted nitride materials, such as GaAsN and InGaAsN, was

studied in Refs. [629–631]. Interestingly, the spin lifetime increases with increasing temperature up to room temperature
for T > 40 K, but decreases with increasing temperature below 40 K. It was found that less than 1% doping of nitride in GaAs
and InGaAsmakes the spin lifetime at room temperature increase bymore than one order ofmagnitude in as-grown samples
before annealing [629]. After annealing the spin lifetime drastically drops [629]. The above unusual behavior indicates that
localized electrons bound to nitride dopants play an important role. Even for delocalized electrons, scattering with nitride
dopants greatly reduces τp and hence increases the spin lifetime. Annealing improves the crystal quality of the diluted nitride
material, hence increasing the mobility and reducing the spin lifetime. The spin lifetime at room temperature as function of
subband quantization energy E1e gives τs ∼ E−11e in unannealed InGaAsN/GaAs multiple quantum wells [631].
Single-particle theories for spin relaxation in (001) quantum wells
We now turn to review the single-particle theory of electron spin relaxation in n-type and intrinsic two-dimensional

electron systems. As in bulk systems, the single-particle theory assumes that for all k the strong scattering criteriaΩkτp � 1
is fulfilled. It is also assumed that the carrier–carrier scattering is irrelevant. 53Within the elastic scattering approximation,54
the spin lifetime for a system near the equilibrium (also implying that the spin polarization is very small) can be calculated
via Eq. (107). Such a paradigm has been widely applied to study spin relaxation. Often the spin–orbit coupling in the
two-dimensional structure is calculated via the k · p method within the multiband envelope-function approximation
together with the Schrödinger–Poisson equation of the heterostructure (see, e.g., Ref. [633]). The momentum scattering
times are calculated via formulae developed for calculating the mobility due to the electron–impurity and electron–phonon
scatterings. It should be mentioned that in heterostructures many factors, such as structure, doping and gate voltage,
can affect the spin–orbit coupling. To quantitatively determine the spin lifetime, one has to quantitatively determine the
spin–orbit coupling. In theoretical calculation, the spin–orbit coupling is determined by the multiband envelope-function
calculation with realistic structure parameters. In experiments, the Rashba and linear Dresselhaus spin–orbit couplings
can be determined quantitatively via several methods, such as electric-field-induced spin precession [64,66] and current-
induced modification of g-factor [634].
A good success of such paradigm is that it reproduces the subband quantization energy E1e dependence of the electron

spin lifetime [577], which can not be explained by the simple relation of τs ∼ E−21e from the D’yakonov–Kachorovskii theory
(see Fig. 15(b)). This is due to the fact that this paradigm takes full account of spin–orbit coupling, via diagonalizing the
multiband envelope-function equation. In the same work Lau et al. also demonstrated that their calculation achieved better
agreement with experiments in the mobility dependence of the spin lifetime compared with the D’yakonov–Kachorovskii
theory (see Fig. 15). They also demonstrated the role of the electron–longitudinal-optical-phonon scattering in spin
relaxation as a function of temperature compared with that of the impurity scattering as depicted in Fig. 15. Systematic
calculation via such a paradigm of various dependences of electron spin lifetime can be found in Ref. [633].
• Temperature dependence. The temperature dependence of the D’yakonov–Perel’ spin relaxation was calculated within

such a paradigm in Refs. [577,635,636]. Kainz et al. attempted to perform microscopic calculations of the temperature-
dependent spin-relaxation rates with realistic system parameters [636]. By using the parameters from experiments,
they calculated the temperature dependence of spin relaxation time and compared it with the experimental data by
Ohno et al. [602] (see Fig. 16). In their calculation the momentum scattering time was not calculated microscopically
but inferred from the Hall mobility. They classified three types of scatterings and assumed that the Hall mobility is
solely limited by each type of scattering. By doing so they obtained three spin lifetimes. Finding that the experimental
measured spin lifetime falls into the region determined by the three calculated ones, they concluded that the calculation

52 The well width dependence of spin lifetime in narrow quantum wells where the well and barrier materials do not share any common atom (e.g., in
InGaAs/InP quantum well) may also contain information on the interface inversion asymmetry [617,628].
53 However, it has been found that in high mobility two-dimensional systems, electron–electron scattering is the dominant momentum scattering to the
D’yakonov–Perel’ spin relaxation [44,368,372].
54 Althoughmost of the single-particle theory is based on the elastic scattering approximation, someworks go beyond that. Dyson and Ridley developed a
method to calculate the momentum scattering time due to electron–longitudinal-optical-phonon scattering beyond the elastic scattering approximation.
In bulk systems, they showed that the elastic scattering approximation may have problems in treating the longitudinal-optical-phonon scattering as it
is essentially inelastic [542]. They further applied their method to study the D’yakonov–Perel’ spin relaxation associated with the electron–longitudinal-
optical-phonon scattering in quantum wells and wires in Ref. [632].
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agrees with the experiments. By close examination, they found that the electron–ionized-impurity scattering dominates at
low temperature (T < 100 K), whereas the electron–longitudinal-optical-phonon scattering dominates at high tempera-
ture [636]. The temperature dependence was found to be more pronounced at low electron density [635,636].
• Electron density dependence. The electron density dependence of spin relaxation was calculated in Refs. [195,197,635–

638]. At zero temperature (degenerate regime), Golub et al. found that the spin relaxation rate increasesmonotonically with
electron density [195]. Interestingly, Averkiev et al. found that the ratio of spin lifetime τ−/τ+ (τ+ (τ−) denotes spin lifetime
for spin along [110] ([11̄0]) direction) has a peak in density dependence: at low density the spin relaxation is dominated by
1/τ− whereas at high density 1/τ+ becomes more and more important for αR, βD > 0 [195,635]. From Eq. (107), one can
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Fig. 17. Spin-relaxation rates 1/τ+ (solid curves), 1/τz (dashed curves) and 1/τ− (dotted curves) as a function of electron concentration for a Boltzmann
electron gas in a GaAs/AlAs heterostructure at temperature T = (1) 30, (2) 77, (3) 150 and (4) 300 K. From Averkiev et al. [635].

understand the above results by noting that β̃D = βD −
1
4γDk

2 can become negative at large k. Similar results have been
obtained in temperature dependence in the nondegenerate regime [635]. In heterojunctions, both the Rashba spin–orbit
coupling and the linear Dresselhaus term depend on the electron density as the built-in electric field and the wave-function
across the junction vary with electron density. αR and βD in heterojunctions can be estimated as αR ' α0nee2/(2κ0ε0) and

βD ' γD
[
16.5πnee2m∗/(8κ0ε0)

] 2
3 , where α0 represents the Rashba coefficient, κ0 is static dielectric constant and ε0 stands

for the vacuum dielectric constant [635]. Averkiev et al. found that the spin relaxation rate 1/τ+ has a minimum in the
density dependence due to the cancelation of the Rashba and linear Dresselhaus spin–orbit coupling, whereas 1/τ− and
1/τz increase with density monotonically (see Fig. 17) [635]. At the electron density where 1/τ+ has a minimum, the spin
relaxation is highly anisotropic. A more careful consideration of the same problemwithin the multiband envelope-function
approachwas given by Kainz et al. for variouswell widths in Refs. [197,636]where the spin–orbit couplingwas treatedmore
carefully. Via a similar approach the Rashba and Dresselhaus spin–orbit couplings in δ-doped InSb/AlxIn1−xSb asymmetric
quantum well were calculated in a range of carrier densities [637].55 Based on these results, the density dependence of
spin lifetime was calculated, where a minimum in the density dependence of the in-plane spin relaxation rate was also
observed [637]. The spin–orbit coupling and thedensity dependence of spin relaxation time in such aquantumwellwere also
studied by Li et al. [638], where the calculation was compared with the experimental results in Ref. [593]. The authors also
showed from the eight-band k·pmodel that the spin–orbit coupling deviates strongly from the linear-k Rashba/Dresselhaus
model [638].
• Gate-voltage dependence. The gate-voltage dependence of spin lifetime for a triangular quantum well defined by

a structure with an infinite height barrier at the left boundary and a constant electric field at the right boundary was
studied by Averkiev et al. [635]. They found that the in-plane spin lifetime τ+ has a maximum when the Rashba and
linear Dresselhaus spin–orbit couplings cancel each other. The gate-voltage dependence of the spin–orbit coupling in a δ-
doped InSb/In1−xAlxSb asymmetric quantum well was calculated in Ref. [637]. It was also shown in Ref. [640] that the spin
lifetimes can be tuned effectively via the electric field along the growth direction. A systematic study on the dependence
of spin lifetime on the electric field across the GaAs/AlGaAs quantum well at room temperature was performed by Lau and
Flatté [146]. From a 14-band envelope-function approach they calculated the Rashba and Dresselhaus spin–orbit couplings
as a function of electric field for various well widths (see Fig. 18). They further calculated the spin lifetime as a function of
electric field and reported that the electric field effect is important in wide quantumwells where the subbandwavefunction
is easily affected by the electric field. Again the spin lifetime along the [110] direction has a maximum as a function of
electric field. For a 7.5 nm quantum well the contribution of the Rashba spin–orbit coupling in spin relaxation exceeds that
of the Dresselhaus one at 150 kV/cm. For such a narrow quantumwell, the Dresselhaus spin–orbit coupling varies little with
electric field (up to 200 kV/cm), whereas the Rashba spin–orbit coupling varies linearly with electric field. Similar results
were obtained by Yang and Chang [156].
• Nonlinear Rashba spin–orbit coupling to spin relaxation. Usually the multiband envelope-function calculation includes

the nonparabolic effect in the spin–orbit coupling, e.g., at high energy the Rashba spin–orbit coupling deviates from linearity
[146,156]. The nonlinear effect in the Rashba spin–orbit coupling was studied comprehensively by Yang and Chang [156].
They proposed a model to characterize such nonlinear effect where the Rashba parameter is substituted by α̃R =

αR
1+ζk2

,
where ζ is a parameter depending on quantum well structure and material. The model fits well with the calculation. The

55 The density dependence of spin splitting in such a structure was measured and compared with calculation in Ref. [639].
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Fig. 18. Left figure: Electric field F (along the growth direction) dependence of electron spin precession vector for a 75 Å and a 150 Å GaAs/Ga0.6Al0.4As
quantumwell at 300 K for different energies E = 10meV (red solid curve), 20 meV (green dashed curve), 50 meV (blue dot-dashed curve), 80 meV (purple
double-dot-dashed curve) and 100meV (black dotted curve). x-component of the spin precession vector induced by the linear Dresselhaus termΩ(D)

x,1 (1, E)
for quantum wells with well width (a) Lw = 75 Å and (b) Lw = 150 Å. x-component of the spin precession vector induced by the Rashba termΩ

(R)
x,1 (1, E)

for (c) Lw = 75 Å and (d) Lw = 150 Å quantum wells. x-component of the spin precession vector induced by the cubic Dresselhaus termΩ
(D)
x,3 (1, E) for (e)

Lw = 75 Å. x-component of the spin precession vector induced by higher order (cubic) Rashba termΩ
(R)
x,3 (1, E) for (f) Lw = 75 Å (Note that the scale is two

orders of magnitude smaller). Right figure: Electric field F (along the growth direction) dependence of electron spin relaxation time T1 , dephasing time T2
and dephasing rate 1/T2 for Lw = 50 Å, Lw = 75 Å and Lw = 150 Å GaAs/Ga0.6Al0.4As quantum wells at 300 K with mobility µ = 800 cm2/V s. Note that
the relative importance of the Dresselhaus (BIA) term and Rashba (SIA) term to spin relaxation as function of the electric field along the growth direction
is depicted in (f). From Lau and Flatté [146].

nonlinearity is more pronounced in narrow band-gap semiconductors. Within such a model the spin relaxation as function
of electric field, well width, density and the ratio αR/βD was investigated comprehensively [156].
• Magnetic field dependence. The magnetic field dependence of the spin relaxation in a two-dimensional system with

both the Rashba and Dresselhaus spin–orbit couplings was discussed by Glazov [377].56 The main results are that the spin
relaxation tensor given by Eq. (107) is extended to the case with a magnetic field along an arbitrary direction. A special case
is that when the magnetic field is along the growth direction of the two-dimensional structure, where Glazov gave

1
τz
= 4τ̃1k2

[
α2R

1+ (ωL − ωc)2τ̃ 21
+

β2D

1+ (ωL + ωc)2τ̃ 21

]
+
τ̃3k6γ 2D
4

1
1+ (ωL − 3ωc)2τ̃ 23

. (108)

Spin lifetime as function of the direction of magnetic field was discussed and compared with experimental data [377]. The
magnetic field effect on spin relaxation in theweak scattering regimewhere the scattering frequency is comparablewith the
spin precession frequency was studied by Glazov [380]. In such a regime, spin polarization shows zero-field oscillations due
to the spin–orbit field induced spin precession. Glazov found that themagnetic-field-induced cyclotron rotation (which also
rotates the k-dependent spin–orbit field) leads to fast oscillations of spin polarization around a non-zero value and a strong
suppression of spin relaxation [380]. Recent experiment confirmed such a prediction in (001) quantum wells and showed
that the effects are absent in (110) quantum wells as the spin–orbit field is along the growth direction, which does not lead
to any spin precession [641]. Spin relaxation in the presence of both electric andmagnetic fields was discussed theoretically
by Bleibaum [378,379].57 In the presence of spin–orbit coupling the electric field can induce an effective magnetic field due
to electron drifting [569]. Spin relaxation is modified by such an effective magnetic field and the real magnetic field due

56 A similar study for spin relaxation in a Si/Ge quantum well with only the Rashba spin–orbit coupling was given by Tahan et al. [290].
57 This has been reported earlier by Weng et al. [569] from the kinetic spin Bloch equation approach (see next section).
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to the induced spin precession. The above effects are in the Markovian limit. Also, there could emerge non-Markovian spin
dynamics under a magnetic field. Glazov and Sherman considered the case where the spin information can be stored in the
closed orbits of cyclotron motion and transferred to the open orbits [381].58 As the closed orbit averaged out the spin–orbit
coupling, the electron spin lifetime in the closed orbits can bemuch longer than that in the open orbits. In such a system, the
fraction of spins in the open orbits soon decays, whereas the fraction of spins in the closed orbits decays slowly, exhibiting
a long-lived tail [381].59 The decay of the tail is governed by scattering processes which transfer electrons between closed
and open orbits [381]. Based on a semiclassical model, the spin dynamics under weak/strong scattering and weak/strong
magnetic-field were discussed [381]. Particularly, they showed that at strong magnetic field B along the growth direction,
the tail disappears and the spin lifetime is elongated as∼ B3 [381]. Under high magnetic field in the quantum Hall regime,
spin relaxation was studied in Refs. [382–387].60 It was shown that at zero temperature with filling factor ν = 1, the spin
relaxes asymptotically with a power law rather than exponential [384]. The spin relaxation is sensitive to the filling factor
and temperature. Experiments have shown that via tuning the filling factor the effect of the hyperfine interaction can be
manipulated [643]. As themagnetic field is high, the g-tensor inhomogeneitymechanism can be important [387]. In general,
spin relaxation in the quantumHall regime is quite different from that in the classical regime. The spin–flip electron–phonon
scattering plays an important role. Also, the electron–electron interaction is crucial to the ground state as well as to spin
dynamics [384].
•Weak localization effect and others.As in the D’yakonov–Perel’ mechanism τs ∼ 1/τp, theweak localization correction to

mobility will lead to correction in spin relaxation as well. The weak localization correction to spin relaxation was studied in
Refs. [644–646]. The classical memory effect, which exists when the characteristic scale of the disorder are comparable with
the mean free path, leads to a non-Markovian spin dynamics with nonexponential tail∼ 1/t2 for quantumwells with equal
Dresselhaus and Rashba spin–orbit coupling strengths [647]. Pershin and Privman proposed that the D’yakonov–Perel’ spin
relaxation in a two-dimensional system can be suppressed by a lattice of antidots [648].
• Spin relaxation in rolled-up two-dimensional electron gas. Spin dynamics in a rolled-up two-dimensional electron gas

was investigated by Trushin and Schliemann [649]. It was shown that the symmetry of spin–orbit coupling varies with the
radius of the rolled-up structure [649]. At certain radius, the spin precession and relaxation of a special spin component is
completely quenched, very similar to that in quantum wells with αR = βD (consider only the linear-k spin–orbit coupling)
[649].
• Crossover from two-dimension to one-dimension. An interesting problem is how the spin relaxation varies with the

channel width of the two-dimensional structure. This problem was investigated theoretically first by Mal’shukov and
Chao [650] and later by Kiselev and Kim [651,652], showing that spin relaxation for some nonuniform distributed spin
polarization and the uniform spin polarization along a certain direction (direction of the effective magnetic of the linear
spin–orbit couplingwith k along the unconstrained direction) is suppressedwhen the channelwidth is smaller than the spin
precession length [650–652]. Originally, these studies considered only the Rashba spin–orbit coupling. Recently Kettemann
extended the theory to include the Dresselhaus spin–orbit coupling (both linear and cubic terms) [653]. Later experimental
studies on submicron InGaAs wires observed that spin lifetime first increases and then decreases with decreasing channel
width (see Fig. 19) [654,655]. The suppression of spin relaxation was first explained by the theory of Mal’shukov and Chao,
which, however, is doubtful as the spin polarization distribution created by optical excitation is not of the type pointed out
in their work. Detailed theoretical examination indicated different explanations [656].
•Non-uniform system: Random spin–orbit coupling to spin relaxation.All the above studies are devoted to a uniform system.

For example, the Rashba spin–orbit coupling is considered as HR = αR(σxky − σykx), where αR = α0Ez is proportional to a
uniform electric field along the growth direction. However, in a real system, such an electric field can not be uniform due
to imperfection. Such imperfection can arise from the the fluctuation during the growth, making Ez position-dependent:
Ez → Ez(r‖) with r‖ = (x, y). Spin relaxation due to this random Rashba spin–orbit coupling can be important when
other spin-relaxation sources are ineffective [294,657]. This was studied comprehensively by Sherman and co-workers in
Refs. [294,657–659]. A particular case is the symmetric (110) quantumwells, where the average Rashba spin–orbit coupling
is zero and the Dresselhaus spin–orbit coupling does not lead to any spin relaxation due to symmetry. Glazov and Sherman
obtained that under weak and moderate magnetic field along the growth direction at rc � ld (rc is the cyclotron radius and
ld is characteristic length of random dopant distribution) and αRkτp � 1 [658],

τ−1z = 4〈(δαR)
2
〉k2τd +

4〈αR〉2k2τp
(1+ ω2c τ 2p )

, (109)

where δαR = αR− 〈αR〉 is the random Rashba coefficient with 〈αR〉 representing the average Rashba coefficient. τd = ld/vk.
The Zeeman interaction is ignored as ωL � ωc . It is seen that both the random and the average spin–orbit couplings lead to
spin relaxation similar to the D’yakonov–Perel’ mechanism. As ωcτd � 1 (as rc � ld), the magnetic field does not suppress
the spin relaxation due to the random Rashba spin–orbit coupling. A simple estimation indicates that in an asymmetrically

58 The non-Markovian spin dynamics can also emerge in the insulating regime, where the nuclear spins stored the historical electron spin information.
59 As spins in the closed orbits oscillate due to spin–orbit coupling, the tail also oscillates.
60 Experimental studies can be found in Refs. [642,643].



108 M.W. Wu et al. / Physics Reports 493 (2010) 61–236

100

10-1

10-2

10-3

0 100
Δt (ps)

F
R

 (
a.

u.
)

30

10

0 20
w (μm)

SP
 (p

s)
τ

a

b
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quantum wires patterned along [100] (open circles) and [110] (filled circles). The dotted line depicts the spin lifetime of the unpatterned quantum well.
Measurements were performed at B = 0. From Holleitner et al. [654].

doped quantum well, the random spin–orbit coupling leads to a spin relaxation rate two orders of magnitude smaller than
that due to the averaged one, leading to a spin lifetime of several tens of nanoseconds in GaAs quantum wells [294]. The
spin relaxation due to the random Rashba spin–orbit coupling may be an important source for (110) quantum wells [660].
At high magnetic field, rc ' ld, the spin relaxation exhibits a nonexponential tail due to the memory effect as the spin in
closed orbits decays slowly [658].
• Decay of non-uniformly distributed spin polarization. The decay of a standing wave of spin polarization in a two-

dimensional systemwith only Rashba spin–orbit coupling was studied by Pershin [36]. It was found that the spin relaxation
depends on the period of the standing wave. The coherent spin precession of electrons moving in the same direction
was shown be responsible for such phenomena. In experiments such a standing wave can be generated by a spin-grating
technique [495]. In a series of theoretical [18,20,32,34,338] and experimental [33,37,661] works, spin relaxation in a spin-
grating systemwas studied,where the spin relaxation in such system is essentially related to the spin diffusion limited by the
D’yakonov–Perel’ mechanism [18,32]. The spin relaxation in a spin-grating system or other nonuniform spin distributions
will be reviewed in Sections 6 and 7.
Spin relaxation in (110) quantum wells: experiments and theories
We now turn to spin relaxation in two-dimensional structures grown along the [110] direction. The bulk Dresselhaus

spin–orbit coupling becomes

HD = γD[(−k2x − 2k
2
y + k

2
z )kz, 4kxkykz, kx(k

2
x − 2k

2
y − k

2
z )] · σ/2 (110)

where the three axes are ex = 1
√
2
(1,−1, 0), ey = (0, 0,−1) and ez = 1

√
2
(1, 1, 0). When only the lowest subband is

considered, the effective spin–orbit coupling is

HSOC = γD[0, 0, kx(k2x − 2k
2
y − 〈k̂

2
z 〉)] · σ/2+ HR (111)

in which 〈k̂2z 〉 denotes the average over the lowest subband and HR = αR(σxky − σykx) is the Rashba spin–orbit coupling.
In symmetric two-dimensional structures HR = 0. It is noted that the effective magnetic field is then along the [110]
direction for all k. The D’yakonov–Perel’ spin relaxation for spin polarization along the [110] direction is then absent. The
question arises as to what kind of mechanism is now responsible for spin relaxation along the [110] direction. To explore
the problem, Ohno et al. performed a systematic study of the dependence of spin lifetime on characteristic parameters such
as the subband quantization energy, electronmobility and the temperature (see Fig. 20) [595,662]. After careful speculation
on the observed dependences of spin relaxation time, they concluded that the spin relaxation in undoped (110) quantum
wells is dominated by the Bir–Aronov–Pikus mechanism [595]. However, the temperature dependence of spin lifetime
is anomalous and seems contradictory to the Bir–Aronov–Pikus mechanism: the spin lifetime increases with increasing
temperature [595,602]. The anomalous increase of spin lifetime with temperature can be understood as follows: the
dissociation of excitons increaseswith temperature rapidlywhich reduces the electron–hole exchange interactionmarkedly
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Fig. 20. Left: spin lifetime τs and carrier recombination time τr in n-doped GaAs (110) and (100) quantum wells as a function of electron mobility µ at
room temperature. Right: temperature T dependence of spin relaxation time τs in undoped (110) quantum wells. The inset shows the excitation intensity
Iex dependence of τs at room temperature. From Ohno et al. [595].

and suppresses the Bir–Aronov–Pikus mechanism [595].61 A similar effect was also found in ZnSe quantum wells [594].
However, the situation in n-doped quantum wells is relatively obscure [595], although the observed mobility dependence
suggests that the Elliott–Yafet mechanism may dominate the spin relaxation at room temperature (see Fig. 20) [595].
We now focus on the electron spin relaxation in n-doped symmetric (110) quantum wells. Let us reexamine the three

spin relaxation mechanisms in symmetric (110) quantum wells more carefully. The D’yakonov–Perel’ mechanism leads to
a spin relaxation tensor,

τ−1z = 0, τ−1x = τ
−1
y = 〈τpβ

2
Dk
2
〉/2 (112)

when only the linear spin–orbit coupling term is considered. For the Elliott–Yafet mechanism, usually the in-plane spin
relaxation rate is larger than the out-of-plane one [111], but the two are generally comparable [111,370]. However, the
Bir–Aronov–Pikus mechanism is isotropic [111]. Therefore the spin relaxation anisotropy will reflect the relevance of the
Bir–Aronov–Pikus mechanism. The experimental investigation was first performed by Döhrmann et al. by measuring spin
decay time in the presence of an in-plane magnetic field [388]. With an in-plane magnetic field, e.g., B ‖ ey, spin dynamics
is governed by the following equations,

∂tSx = −Sx/τx + ωLSz, ∂tSz = −Sz/τz − ωLSx. (113)

The solution is

Sz(t) = S(0)e−
1
2 (τ
−1
x +τ

−1
z )t cos(ωt − φ)/ cos(φ) (114)

for 2ωL > |τ−1z −τ
−1
x |. Here tanφ =

τ−1x −τ
−1
z

2ω andω =
√
ω2L − (τ

−1
x − τ

−1
z )2/4. The observedmagnetic field dependence is a

step-function-like: for amoderatemagnetic fieldB > 0.5 T, the spin lifetime changes from τz to 2/(τ−1x +τ
−1
z ). Themeasured

spin lifetimes at B = 0 and B = 0.6 T in GaAs (110) modulation n-doped quantum wells as function of temperature are
shown in Fig. 21.62 It is seen that at low temperature the anisotropy is quite weak, which indicates that the spin relaxation is
dominated by the Bir–Aronov–Pikus mechanism. With increasing temperature, spin relaxation anisotropy increases as the
Bir–Aronov–Pikus mechanism becomes weaker and the D’yakonov–Perel’ mechanism for in-plane spin relaxation grows
stronger.63 The decrease of τz at high temperature was explained by the intersubband spin relaxation mechanism [388,
667]. The intersubband spin relaxation mechanism can be understood as follows: when higher subbands are involved, the
spin–orbit coupling

HD = γD[(−k2x − 2k
2
y + k

2
z )kz, 4kxkykz, kx(k

2
x − 2k

2
y − k

2
z )] · σ/2 (115)

can enable intersubband spin–flip scattering as the first two terms couple states with different spin and parity. At high
temperaturewhen the higher subbands are populated, the intersubband spin relaxationmechanism can be important [388].

61 This is also confirmed by the increase of photo-carrier lifetime with temperature [663].
62 A similar temperature dependence of spin lifetime in (110) InGaAs quantum wells was studied in Ref. [664].
63 In InGaAs quantumwells larger spin relaxation anisotropy was found [665,666], which is due to the much stronger Dresselhaus spin–orbit coupling in
InGaAs.
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This mechanism also explains the mobility dependence of spin lifetime in Fig. 20. Recently, Zhou andWu proposed a virtual
intersubband spin relaxation, where the higher subbands need not to be populated [668]. However, calculation indicated
that both the real and virtual intersubband spin relaxation mechanisms are ineffective at low temperature for modulation
n-doped quantum wells, as the scattering is suppressed [388,668].
The photo excitation of holes in the photoluminescence or Faraday/Kerr rotation measurement makes the

Bir–Aronov–Pikusmechanism become involved. Thismasks the intrinsic electron spin relaxation in n-doped (110) quantum
wells at low temperature [388]. Recent advancement in the spin noise spectroscopy method [497,498,669] enables the
probing of spin relaxation without photo-carrier excitation. The Bir–Aronov–Pikus mechanism is then removed, and the
intrinsic spin lifetime can be approached. This method was applied to modulation n-doped GaAs (110) quantum wells by
Müller et al., where a much longer spin lifetime of τz = 24 ns at low temperature (20 K) was obtained by careful analysis
of the data [660]. The authors attributed the spin relaxation at such low temperature to the random Rashba spin–orbit
coupling mechanism [294,670]. Later, theoretical calculation of the spin relaxation time, limited by the random Rashba
spin–orbit coupling by Zhou andWu, via the fully microscopic kinetic spin Bloch equation approach [670] agrees well with
the experimental results of Müller et al. [660].
Other investigations include the achievement of high temperature gate control of spin lifetime [193,671,672], which can

be useful in spin switch devices or spin field-effect transistors. The typical results of spin lifetime as a function of the electric
field E along the growth direction are shown in Fig. 22. The low field deviation of τz ∼ E2 indicates the relevance of spin
relaxation mechanisms other than the D’yakonov–Perel’ one associated with the Rashba spin–orbit coupling. Bel’kov et al.
studied the relation of symmetry to spin relaxation in (110) quantum wells [183,663]. The symmetry of the quantum well
was probed by the magnetic field induced photo-galvanic effect. In certain configurations, the photocurrent is proportional
to the Rashba spin–orbit coupling coefficient. The authors observed that the photocurrent indeed vanishes for symmetric
quantumwells. It was also observed that the spin lifetime is longest in symmetric quantumwells. Therefore the experiment
demonstrated that the structure inversion asymmetry can be tuned down to zero. As only the Rashba spin–orbit coupling
contributes to the D’yakonov–Perel’ spin relaxation, the (110) quantum wells can be used as a good platform to investigate
Rashba spin–orbit coupling. Eldridge et al. presented all-optical measurements of the Rashba spin–orbit coupling: by
measuring the spin lifetime via a polarized pump-probe reflection technique and measuring the diffusion constant from
a spin-grating method (fromwhich τp is extracted), they extracted the Rashba coefficient α0 = (2mkBTτsτp)−1/2/(eE) from
theD’yakonov–Perel’ theory [179]. At low temperature, they foundgoodquantitative agreementwith thek·p calculation and
an unexpected temperature dependence. In undoped (110) quantumwells, Eldridge et al. discovered that the asymmetry of
the band edge profile does not contribute to the Rashba spin–orbit coupling when the electrostatic potential is absent [178].
These findings confirm the theory of Lassnig [148] (see Section 2.3.3). Spin relaxation in (110) quantumwells under surface
acoustic waves was studied in Refs. [673,674].
Theoretical investigations on spin relaxation in (110) quantum wells have been few up to now [640,668,670,675–678].

Among these works, Wu and Gonokami first proposed that the D’yakonov–Perel’ mechanism can be effective for relaxation
of spin pointing along the growth direction when an in-plane magnetic field is exerted [675]. Later it was shown that
the in-plane spin relaxation rate can be tuned by strain which can be induced by the mole fraction of gallium in an
InGaAs/InP quantumwell [676]. The effect of electric field across a quantumwell on spin relaxationwas studied in Ref. [640].
Recently, Zhou and Wu proposed virtual intrasubband spin–flip electron–phonon and electron–impurity scattering due to
the intersubband spin–orbit coupling [668]. Tarasenko gave the spin relaxation tensor in asymmetric (110) quantum wells
with a finite Rashba spin–orbit coupling [677]. He found that in the presence of the Rashba spin–orbit coupling, the decay
of electron spin initially oriented along the growth direction is characterized by two spin lifetimes. Glazov et al. proposed
a symmetric multiple (110) GaAs quantum well structure to suppress the spin relaxation due to the random Rashba effect
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Fig. 22. Measured spin relaxation rate vs. bias voltage and corresponding electric field (open circles) comparedwith calculation for a symmetrical quantum
well (filled circles). T = 170 K. From Karimov et al. [193].

[678]. In such a structure, the donor Coulomb potentials seen by electrons in the central quantum well is largely screened
by the electrons in other quantum wells, which hence strongly suppress the random Rashba spin–orbit coupling and spin
relaxation [678]. In this structure, spin–flip scattering between electrons in different quantum wells, however, leads to
an additional spin relaxation. The spin–flip inter-well electron–electron scattering is comparable with the random Rashba
spin–orbit coupling mechanism in the non-degenerate regime, but is suppressed in the degenerate regime [678].
Spin relaxation in (111) quantum wells
Besides (110) quantum wells, spin relaxation in (111) quantum wells has also attracted much attention due to its

particular symmetry. In (111) quantum wells the linear Dresselhaus spin–orbit coupling is of the same form as the Rashba
one. The linear-k spin–orbit coupling term is then

HSO,1 = αIA(σxky − σykx), (116)

where αIA = αR + 2γD〈k̂2z 〉/
√
3. The cubic-k term reads

HSO,3 =
γD

2
√
3

[
k2(−kyσx + kxσy)+

√
2(3k2x − k

2
y)kyσz

]
. (117)

The spin lifetimes are then

τ−1x = τ
−1
y =

〈
k2τ̃1

[
12α2IA − 4

√
3γDαIAk2 + (1+ 2τ̃3/τ̃1)γ 2D k

4
]/

6
〉
, (118)

τ−1z =
〈
k2τ̃1(γDk2 − 2

√
3αIA)2/3

〉
. (119)

It was first proposed by Cartoixà et al. [340,679] that by tuning the gate-voltage, the condition γD〈k2〉 = 2
√
3αIA can be

achieved, where spin relaxation is suppressed for all spin components (see Fig. 23): τz = ∞ and τx = τy = 3/(γ 2D 〈k
6
〉τ̃3).

Microscopic calculation using an eight-band k ·pmethod indicated the feasibility of such a scheme in an InAlAs/InGaAs/InP
quantum well [680]. A similar scheme based on tuning spin–orbit coupling via strain was also proposed [676].
Spin relaxation in arbitrarily oriented quantum wells
Accounting only for the linear-k Dresselhaus spin–orbit coupling, the spin relaxation tensor for an arbitrarily oriented

quantum well reads

τ−1ij = (δijTrν̂ − νij)/τ
0
s (εk). (120)

Here τ 0s is the in-plane spin lifetime for the (001) quantum well. The tensor ν̂ depends on the orientation of the quantum
well n = (nx, ny, nz)64 as [369]

νxx = 4n2x(n
2
y + n

2
z )− (n

2
y − n

2
z )
2(9n2x − 1), νxy = nxny[9(n2x − n

2
z )(n

2
y − n

2
z )− 2(1− n

2
z )], (121)

with other components obtained by cyclic permutation of the x, y and z indexes.

64 The x, y and z axis are taking along the [100], [010] and [001] directions respectively.
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Spin relaxation in (sub)-monolayers: experiments
Spin relaxation in undoped sub-monolayer and monolayer InAs structures grown in a GaAs matrix was studied in

Refs. [681,682]. Themonolayer structure on the (001) surface can be regarded as an ideal two-dimensional system. However,
the (311) oriented monolayer forms wire-like or disk-like microstructures on GaAs steps and facets. In sub-monolayer InAs
structures, such as 1/3 and 1/2 monolayers, InAs was found to be organized as disk-like islands with a lateral size of tens of
nanometers. However, the carrier system is still of a two-dimensional nature but with a lower density of states and smaller
mobility. It was then found that the spin relaxation is suppressed by reducing the layer thickness (see Fig. 24) [681]. The
boundaries and deformation potentials are enhanced with decreased coverage, which leads to the decrease of momentum
scattering time and suppresses spin relaxation [681]. For monolayer structures, the (311) structure has a much longer spin
lifetime than the (001) one as the surface roughness is much larger in the former [681]. The g-factor and spin dephasing
time were also measured as a function of excitation density for these structures [681]. The spin dephasing time decreases
with excitation density for all the 1/3, 1/2 and 1 monolayer structures [681]. The decrease of spin lifetime may be due to
the enhancement of the D’yakonov–Perel’ mechanism as 〈k6〉 increases or due to the enhancement of the Bir–Aronov–Pikus
mechanism as the hole density increases. However, via examination of the temperature dependence of spin lifetime, Yang
et al. [681] found that the Bir–Aronov–Pikusmechanismcanonly be important at lowexcitation density in the 1/3monolayer
structure due to the strong electron–hole exchange interaction between the spatially confined electrons and holes [682].
The temperature dependence of spin lifetime at higher excitation density exhibits a peak [681,682], which signals the
D’yakonov–Perel’ spin relaxation associatedwith the electron–electron scattering [110,372]. Finally, the density dependence
of the g-factor was used to analyse the electronic density of states in these structures [681].
Spin relaxation in parabolic quantum wells: experiments
A good candidate for spintronic device structure is the parabolic quantum well, where the g-factor and spin lifetime

can be tuned efficiently by electrical means [67,78,683]. Recently, the Rashba and linear Dresselhaus spin–orbit couplings
in parabolic quantum wells were measured by monitoring the spin precession frequency of drifting electrons via time-
resolved Kerr rotation [67]. It was found that the Rashba spin splitting can be tuned significantly by the gate biases, whereas
the Dresselhaus spin–orbit coupling varies only weakly. The spin relaxation was then tuned by gate-voltage (see Fig. 25). It
was observed that the anisotropy of spin relaxation vanishes when the Rashba spin–orbit coupling is tuned to zero.
Spin relaxation in II–VI semiconductor two-dimensional structures: experiments
Spin relaxation in II–VI semiconductor two-dimensional structures has also been widely studied. The first remarkable

advancement is that the spin lifetime can be increased by several orders of magnitude via n-type doping in ZnSe quantum
wells [584]. It was observed that the spin lifetime is on the order of nanoseconds and is only weakly temperature
dependent [584]. The spin lifetime in undoped ZnSe quantum wells is on the order of 10 ps at low temperature [584,594].
In undoped quantum wells the spin lifetime was observed to increase from less than 10 ps at 20 K to 500 ps at 200 K [594].
As the exciton binding energy is large (19 meV), at low temperature spin dynamics is governed by the exciton behavior.
Experimental examination of the relation between spin lifetime and momentum lifetime reveals a motional narrowing
nature τs ∼ τ−1p , which coincides with the picture of Maialle et al. [118]: the electron–hole exchange interaction serves
as an effective magnetic field depending on exciton momentum. The momentum dependent spin precession leads to a
spin relaxation similar to the D’yakonov–Perel’ one for electron spin. At high temperature the spin relaxation is further
suppressed with increasing temperature due to the ionization of excitons, which weakens the electron–hole exchange
interaction [594]. The spin relaxations of electron, exciton and trion were studied in n-doped single CdTe quantum wells
with different doping density [684]. It was found that the exciton spin lifetime (18–36 ps) is much shorter than the electron
one (∼180 ps) and the trion spin relaxation is governed by the fast hole spin relaxation [684]. Spin relaxation in (110) ZnSe
quantum wells was studied in Ref. [685], where behaviors quite different from that in GaAs (110) quantum wells were
found. Spin lifetimewas reported to decreasemonotonically with increasing temperature in CdTe quantumwells [535]. The
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electron density dependence of spin lifetime in CdTe quantum wells was found to be non-monotonic: it exhibits a peak at
8× 1010 cm−2 for T = 5 K [686].

4.2.4. Electron spin relaxation in p-type III–V and II–VI semiconductor two-dimensional structures
The two main electron spin relaxation mechanisms in p-type two-dimensional structures are the D’yakonov–Perel’ and

the Bir–Aronov–Pikus mechanisms. It is believed that at low temperature and/or high hole density the Bir–Aronov–Pikus
mechanism dominates. The Elliott–Yafetmechanismmay also dominate spin relaxation in heavily p-doped narrow bandgap
semiconductors at very low temperature, where the Bir–Aronov–Pikus mechanism is suppressed by Pauli blocking [117].
The D’yakonov–Perel’ mechanism determines spin relaxation in other regimes.
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Experimental investigations on electron spin relaxation in p-type quantum wells are scarce. In a 6 nm p-modulation-
doped GaAs multiple quantum well with hole density nh = 4 × 1011 cm−2, Damen et al. measured an electron spin
lifetime of 150 ps at 10 K [687]. In δ-doped double heterostructures with a doping density 8 × 1012 cm−2, extremely long
spin lifetimes up to 20 ns were observed at 6 K and a decrease of spin lifetime with temperature τs ∼ T−0.6 was found
for T = 6–60 K (see Fig. 26) [688]. The extremely long spin lifetime was explained as suppression of the electron–hole
exchange interaction by spatially separated electrons and holes in the δ-doped double heterostructures. However, the
D’yakonov–Perel’ spin relaxation should also be suppressed to achieve such a long spin lifetime, i.e., the momentum
scattering should be strong in the structure.65 Later Gotoh et al. measured spin relaxation in a device where the spatial
separation between electrons and holes can be tuned by a gate-voltage at room temperature [689]. They showed that
the spin relaxation is enhanced when the spatial electron–hole separation is shortened. From the observed results, they
concluded that electron spin relaxation is dominated by the Bir–Aronov–Pikus mechanism in their structures. However,
the gate-voltage also modifies the Rashba spin–orbit coupling, these effects should also be taken into account for a close
examination. The temperature dependence of spin relaxation at low temperature (T ≤ 60 K) in p-modulation-doped GaAs
quantum wells was investigated in Refs. [690–692], where a decrease of spin lifetime was found and the spin relaxation
varied from 600 ps to 40 ps. Energy-resolved spin dynamics at the surfaces of p-GaAs was studied by Schneider et al.
using time- and spin- resolved two-photon photoemission [693]. The spin lifetime was found to increase with decreasing
electron kinetic energy, in agreement with the corresponding theory [390]. They also observed a suppression of spin
relaxation in (001) surfaces where the hole density is reduced by about an order of magnitude due to the band-bending
effect.
Theoretically, the role of electron and hole spin relaxation dynamics in time-resolved luminescence spectral was studied

by Uenoyama and Sham [694,695]. The ultrafast carrier and spin dynamics was then investigated from a fully microscopic
kinetic spin Bloch equation approach [44,334,350], including also the carrier–carrier Coulomb scattering by Wu and Metiu
[350]. Calculation of the Bir–Aronov–Pikus spin relaxation in an excitonic system and later in an electron–hole plasma was
performed by Maialle et al. [118,390,391], where the energy-dependent spin relaxation time and the effects of the valence-
band spin mixing as well as the electric field along the growth direction were studied. These studies found that (i) spin
lifetime decreases with electron kinetic energy (see Fig. 27); (ii) the valence-band spin mixing can lead to a factor of two
correction; and (iii) spin relaxation due to the Bir–Aronov–Pikusmechanism can be tuned substantially by gate-voltage. The
relative importance of the Bir–Aronov–Pikus, Elliott–Yafet and D’yakonov–Perel’ mechanisms was also compared in GaAs
quantumwells [390].Maialle suggested that the Bir–Aronov–Pikusmechanism ismore important than theD’yakonov–Perel’
mechanism at medium energy; in contrast the Bir–Aronov–Pikus mechanism is more important at low energy in bulk GaAs
from the same calculation (see Fig. 27).

65 The electron–impurity scattering is the only possible candidate to suppress the D’yakonov–Perel’ spin relaxation in the experimental condition, as
other scatterings are limited at such low temperature and low electron density.
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4.2.5. Electron spin relaxation in III–V and II–VI semiconductor one-dimensional structures
There are much fewer works on electron spin relaxation in one-dimensional structures compared with the electron

spin relaxation in two-dimensional structures. It is believed that the D’yakonov–Perel’ mechanism is the most efficient one,
unless it is suppressed in a certain geometry. Due to the additional constraint, the spin–orbit couplings in a one-dimensional
system are quite different from those in the two-dimensional case. By denoting the unconstrained direction as ẑ, the Rashba
spin–orbit coupling for the lowest subband is then

HR = α0|e|−1
[
σx〈∂yV (x, y)〉 − σy〈∂xV (x, y)〉

]
kz, (122)

where V (x, y) is the electrostatic potential and 〈. . .〉 stands for the average over the lowest subband wavefunction. The
Dresselhaus spin–orbit coupling depends on the growth direction of the quantum wire. If ẑ ‖ [001], then

HD = γD〈(k̂2x − k̂
2
y)〉σzkz . (123)

One notices that the spin precession direction is the same for all kz . Such symmetry leads infinite spin lifetimes for spin
polarization along the spin precession direction. However, the spin lifetimes in other directions are still finite. By proper
arrangement of the growth direction and the confinement, the Rashba andDresselhaus spin–orbit couplings can be canceled,
where relaxation for all the spin components due to the D’yakonov–Perel’ mechanism can be inhibited [696,697].
Experimentally, spin relaxation in undoped rectangular GaAs/AlAs quantumwires with small (<20 nm) lateral sizes was

studied via time-resolved photoluminescence [698]. The measured spin lifetime is shown in Fig. 28 together with the spin
lifetime in quantumwells for comparison. One finds that the spin lifetime in the narrower (12 nm× 12 nm) quantumwire
can be larger than that in the wider one (19 nm× 13 nm). This is in contrast to the fact that both the D’yakonov–Perel’ and
Bir–Aronov–Pikus mechanisms increase with the confinement, as also indicated by the spin lifetime in quantum wells for
different well widths. The temperature dependence of the wide quantum wire is similar to that in quantum wells, which
indicates the multisubband effect [696]. In narrow quantumwire, the temperature dependence is non-monotonic, possibly
indicating the effect of the electron–hole Coulomb scattering [109,110]. Wire width dependence of the spin relaxation
in wide quantum wires was studied in Refs. [654,655], where the crossover from two dimensions to one dimension was
discussed. Transport studies of spin lifetime were reported in Ref. [699].
Theoretically, the study of spin relaxation in quantum wires focused on the D’yakonov–Perel’ mechanism. Pramanik

et al. studied spin relaxation in a wide quantum wire (4 nm×30 nm) using a semiclassical approach (via the Monte Carlo
simulation) [701]. In their work spin relaxation was found to be anisotropic, as analyzed above. They showed that electric
fields which drive electrons to high k states lead to faster spin relaxation [701]. Later Dyson and Ridley studied electron
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spin relaxation in quantum wires due to electron–longitudinal-optical-phonon scattering [632]. Unlike previous studies
concerning electron–longitudinal-optical-phonon scattering, no elastic scattering approximation was made. They gave
analytical expressions for the energy dependent scattering time where the inelastic nature of the collision was fully taken
into account. They found that the spin relaxation rate increases with confinement asymmetry, as indicated by Eq. (123)
where the Dresselhaus spin–orbit coupling is proportional to 〈(k̂2x − k̂

2
y)〉. Spin lifetime due to the electron–longitudinal-

optical-phonon scattering was also found to increase with temperature [632]. In the presence of both the Rashba and
Dresselhaus spin orbit couplings, the spin relaxation becomes anisotropic. Consider a special case, where the strength of
the Rashba spin–orbit coupling is equal to that of the linear Dresselhaus spin–orbit coupling: In the two-dimensional case,
this leads to a zero spin-splitting for k along the [110] direction, whereas there is a maximum spin-splitting for k along
the [11̄0] direction. By superimposing additional constrainment to form quantum wires with the growth direction along
[110] direction and keeping the condition that the strengths of the Rashba and linear Dresselhaus spin–orbit couplings are
equal, it is easy to understand that the spin–orbit field is zero and spin relaxation is inhibited. Such a condition holds for
narrow quantum wires, where only the lowest subband is relevant. Recently, Liu et al. showed that it also holds for quasi-
one-dimensional quantum wires where the wire width is comparable to the spin precession length or mean free path (see
Fig. 29) [697]. The underlying physics is that electronswith a large transversemomentum component to thewire orientation
almost do not contribute to the spin-dephasing because of motional narrowing as they suffer strong boundary scattering.
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Only electrons with a large momentum component parallel to wire orientation contribute significantly to spin relaxation.
Hence spin relaxation depends largely on the wire orientation for equal Rashba and Dresselhaus spin–orbit coupling
strengths when the cubic Dresselhaus term is neglected66 (see Fig. 29) [697]. The authors also considered the realistic
conditions of imperfect orientation along the [110] direction, the cubic Dresselhaus term and inequality of the Rashba
and linear Dresselhaus spin–orbit coupling strengths [697]. Recent experimental results confirmed the above theoretical
predictions (see Fig. 30) [700]. In the experiment, the strengths of the Rashba and linear Dresselhaus spin–orbit coupling
are not equal. From thewire orientation dependence, the authors estimated that the ratio of the strengths of the Rashba and
linear Dresselhaus spin–orbit coupling is about 2.

4.2.6. Hole spin relaxation in the metallic regime
Because of the complexity of the valence bands, hole spin relaxation is quite different from electron spin relaxation.

In bulk III–V and II–VI semiconductors, due to the strong spin–orbit coupling and the heavy-light-hole mixing, the
D’yakonov–Perel’ spin relaxation is very efficient, yielding a very short spin lifetime τs ∼ 100 fs (see Fig. 31) [207,210]. In
nanostructures, the heavy-light-hole degeneracy at k = 0 is lifted and the effect of the spin–orbit coupling is reduced. Spin
relaxation is hence slowed down. In quantum wells, hole spin relaxation is in the picosecond regime, usually longer at low
temperature [400,445,446]. Hole spin relaxation in nanostructures ismore complicated, as hole spin–orbit coupling and hole
subband structure can vary largely with the geometry (e.g., size and growth direction) of the nanostructures [113]. Besides
the D’yakonov–Perel’ mechanism, other mechanismsmay also be important. For example, consider a unstrained symmetric
p-type quantum well with only the lowest heavy-hole subband being relevant. The Rashba spin–orbit coupling vanishes
as the structure is symmetric. The Luttinger Hamiltonian only induces hole-spin-mixing but no zero-field spin splitting in
the lowest heavy-hole subband due to its space-inversion symmetry. The zero-field spin splitting can only originate from
the Dresselhaus spin–orbit coupling, which is much weaker than the spin–orbit coupling in the bulk system due to the
Luttinger Hamiltonian. The D’yakonov–Perel’ mechanism is then largely suppressed. On the other hand, the spin-mixing
induced by the Luttinger Hamiltonian leads to an effective ‘‘spin’’-flip scattering associated with any momentum scattering
(the Elliott–Yafet-type mechanism), such as hole–phonon scattering [694,695,702–704]. Such ‘‘spin’’-flip processes can be
very efficient, especially near a subband anti-crossing point [705]. In general both the D’yakonov–Perel’ and Elliott–Yafet-
type mechanisms should be considered. Ferreira and Bastard compared the two spin relaxationmechanisms and found that
the D’yakonov–Perel’ mechanism is usually more important in asymmetric quantumwells [706]. Finally, in heavily n-doped
samples, the electron–hole exchange interaction (the Bir–Aronov–Pikus mechanism) may also be relevant.
Below we first review hole spin relaxation in bulk materials. Experiments in undoped GaAs revealed that the hole spin

lifetime is about 100 fs at room temperature [207].67 Theoretical calculation of the ultrafast nonequilibrium dynamics
under optical excitation, including the spin–orbit coupling as well as hole–phonon and hole–hole scatterings, repeated the
observed results [210]. Near the equilibrium, calculation reported a spin lifetime about 200 fs for heavy-holes and less
than 100 fs for light-holes at room temperature [209]. Hole spin relaxation was also considered in the framework of non-
Markovian stochastic theory [708]. The spin lifetime of the Γ7 band hole in wurtzite GaN was measured to be 120 ps [709],
much longer than that in GaAs. This is because, unlike the zinc-blende structures, valence bands in wurtzite semiconductors
are split into three separated bands, Γ9, Γ7 and Γ7′ . The band separation reduces the effect of the spin–orbit coupling and
suppresses the D’yakonov–Perel spin relaxation.

66 Note that the dependence of the spin relaxation on quantum wire orientation was also shown by Holleitner et al. [654,655], where a shorter spin
lifetime in wires along the [110] direction than that in wires along the [100] direction was found. This may be because of an opposite sign of the Rashba
spin–orbit coupling in those wires, according to the theory by Liu et al. [697].
67 Hole spin relaxation in split-off bands was studied by Kauschke et al. [707].
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Fig. 31. Pump-probe measurements of hole spin dynamics in bulk undoped GaAs at different probe wavelengths 3200 nm (top), 3000 nm (middle) and
3800 nm (bottom). T : transmission, 1T : differential transmission. Difference in differential transmission probed by right (1T+) and left (1T−) circular
polarizations (1T+ −1T−)/T is related to hole spin polarization. From Hilton and Tang [207].

Hole spin relaxation in a bulk semiconductor under strain was studied by D’yakonov and Perel’ [710]. It was found that
the hole spin along the strain axis relaxes much more slowly than the unstrained samples. This is because strain lifts the
heavy-hole and light-hole degeneracy at the Γ point and largely reduces the spin–orbit effect in both heavy- and light-hole
bands.
More studies were devoted to hole spin relaxation in two-dimensional structures. Experimentally, Ganichev et al.

measured hole spin relaxation by spin-sensitive bleaching of intersubband hole spin orientation in a p-type quantum well
with well width Lw = 15 nm. At low temperature (T < 50 K) the hole spin lifetime varies as ∼T−1/2 for hole density
= 2 × 1011 cm−2 [711]. Subsequent studies via the same method extended the data to T < 140 K and to different well
widths (see Fig. 33) [712]. Strikingly, spin relaxation is more efficient in wider quantum wells, in contrast to the inverse
tendency in the electron case. This is a specific feature of two-dimensional hole systems where the spin–orbit coupling is
determined by heavy-light hole mixing, which is stronger in wider quantum wells (see Eq. (22), the Rashba coefficient
is proportional to the inverse of the hole subband splitting, i.e., the Rashba coefficient decreases with increasing well
width) [206]. Minkov et al. found that the hole spin lifetime (deduced from the weak antilocalization measurements)
decreases rapidly with hole density at very low temperature T = 0.44 K for 3 < nh < 10 × 1011 cm−2 but varies slowly
with temperature for T < 5 K at nh ' 8 × 1011 cm−2 in p-InGaAs/GaAs quantum wells [713]. This is consistent with
the D’yakonov–Perel’ spin relaxation in the degenerate regime, where temperature (hole density) changes both the hole
distribution and hole-momentum scattering marginally (markedly). In an undoped 1.5 monolayer InAs/GaAs quantum
well at 10 K, Li et al. observed a long hole spin lifetime (τ hs ' 200 ps) which is comparable to the electron spin lifetime
τ es ' 350 ps in the same structure [714]. This may be because that the hole spin–orbit coupling is weak in such ultrathin
layers, as hole spin–orbit coupling decreases with quantum well width [206]. Interestingly, it was found that the hole spin
lifetime has a peak in its temperature dependence [715], which resembles the temperature dependence of the electron spin
lifetime in a similar structure [681,682]. This is consistent with the D’yakonov–Perel’ spin relaxation due to the hole–hole
Coulomb scattering [299]. Baylac et al. observed that the hole spin lifetime decreases with photo-excitation energy at very
low temperature (1.7 K) [716]. The result was explained by the fact that hole spin relaxation rate increases with hole
kinetic energy [716]. Both the D’yakonov–Perel’ and Elliott–Yafet mechanisms give such a dependence [363,702,706]. In
a designed double quantum well structure, Lu et al. demonstrated that hole spin relaxation in a narrow well with width
Lw = 4.5 nm at room temperature can be suppressed (τ hs ' 100 ps) if electrons tunnel out to an adjacent quantum well
rapidly [611]. This gives evidence that the Bir–Aronov–Pikus mechanism plays an important role in hole spin relaxation.
The hole-spin relaxation time in n-doped quantum wells was first measured by Damen et al., finding that τ hs ' 4 ps at
10 K [687]. A long hole spin lifetime, up to nanoseconds, was observed in later experiments in n-doped quantum wells at
low temperature [393,394,445,717,718] which is assigned to localized holes. Hole spin relaxation in n-type quantum wells
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Fig. 32. Temperature dependence of hole spin lifetime in n-doped GaAs/AlGaAs quantum wells. Reproduced from Baylac et al. [393].
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shows the hole spin–orbit coupling constant β (in meV Å) as function of quantum well width. From Schneider et al. [712].

was reported to decreasewithmagnetic field [717]; this is because the g-tensor inhomogeneitymechanism is important in a
two-dimensional hole system [399]. Also the hole spin lifetime decreases drastically with increasing temperature in n-type
quantum wells [393,445] (see Fig. 32) as the spin relaxation rate increases with increasing hole kinetic energy. Hole spin
relaxation in type-II quantumwells was studied by Kawazoe et al. [719] where two spin decay components were observed:
a faster one with τ hs ∼ 20–100 ps and a slower one with τ

h
s ∼ 20 ns. The slower decay was attributed to the localized

holes [719]. In II–VI semiconductor quantum wells, such as CdTe quantum wells, the hole spin lifetime is on the order of
tens of ps [531,684,720].
Theoretically, hole spin relaxation and its relation to photoluminescence spectra were studied by Uenoyama and

Sham in n-doped, undoped and p-doped quantum wells [694,695], where the hole–phonon scattering was examined.
Specific calculations of ‘‘spin’’-flip scattering, which leads to the Elliott–Yafet-like spin relaxation, were performed by
Ferreira and Bastard [702,706] and by Vervoort et al. [216], taking into account of the interface inversion asymmetry. The
D’yakonov–Perel’ spin relaxation due to the ‘‘spin’’-conserving scattering via standard single particle paradigm was given
by Ferreira and Bastard [706]. The role of the Bir–Aronov–Pikus mechanism in hole spin relaxation in quantum wells was
discussed by Maialle [395]. It was found that in narrow quantum wells, the Bir–Aronov–Pikus mechanism is comparable
with other mechanisms.
Finally, it should be mentioned that as yet the hole spin relaxation in one-dimensional structures has only been

investigated by Lü et al. theoretically [705]. They studied the topic comprehensively via the kinetic spin Bloch equation
approach [44,334,350]. Their work will be introduced in Section 5.



120 M.W. Wu et al. / Physics Reports 493 (2010) 61–236

2.0

1.5

1.0

0.5

2.5

R
am

an
 s

hi
ft

 (
m

eV
)

0.0
5 100 15
Magnetic field

Fig. 34. Raman shift for the spin–flip transitions for electron and Mn ions as a function of magnetic field. The expected behavior for noninteracting
subsystems calculated is indicated by the solid and dashed curves. ESMn and E

S
e denoteMn and electron spin splitting respectively. The anti-crossing splitting

is 2δ. The temperature is T = 2 K. Inset shows the Raman spectra (every 0.1 T) in the region of the anti-crossing. From Teran et al. [721].

4.3. Carrier spin relaxation in III–V and II–VI paramagnetic diluted magnetic semiconductors

Semiconductors dilutedly dopedwithmagnetic impurities, such asMn, are interestingmaterials because themagnetism
and electrics can be incorporated together. Understanding carrier spin dynamics in such materials is important for the
application. Also the spin dynamics of the magnetic impurity or the magnetization dynamics is closely related to the carrier
spin dynamics.Most of theworks in the literature focus onMndoped III–V and II–VI dilutedmagnetic semiconductors. In this
subsectionwe review carrier spin dynamics in thesematerials.We restrict our review on spin dynamics to the paramagnetic
phase, where the description is much easier.
A direct consequence of the s(p)–d exchange interaction is that it contributes to the carrier spin–flip scattering and hence

carrier spin relaxation. The s(p)–d exchange interaction is believed to dominate spin relaxation in (II,Mn)-VI semiconductors
[449]. Besides spin relaxation, the s(p)–d exchange interaction also leads to spin precession: carrier spin precesses in the
mean field of the s(p)–d exchange interaction. Under an external magnetic field, carrier spins precess in the coaction of the
external field and the mean field of the Mn spins. For example, if B ‖ x̂, electron spin Larmor precession frequency is then

ωL = EeZ = |geµBB− xN0Jsd〈S
d
x 〉|. (124)

〈Sdx 〉 = −
5
2B5/2[5gMnµBB/(2kBT )] is the average Mn spin polarization at equilibrium, where B5/2(x) is the spin-5/2 Brillouin

function and gMn is the Mn spin g-factor. When the Mn density is high, the exchange interaction can be much larger than
the Zeeman interaction geµBB, leading to the giant Zeeman splitting. In ZnSe/MnSe heterostructures, a large g-factor of
400 was observed by Crooker et al. [447]. The contribution from the exchange interaction to spin precession leads to a
nonlinear magnetic field dependence of Larmor frequency, which can be used to determine the strength of the exchange
coupling in experiments [233,317,721,722]. The exchange mean field is largely reduced at elevated temperature. This leads
to a drastic decrease in spin precession frequencywith increasing temperature [233,317,450]. The precession of carrier spins
and Mn spins can be strongly coupled when their frequencies match (see Fig. 34) [721,723]. Also, nonequilibrium carrier
spin polarization can be transferred to the Mn spin system via exchange interaction [98,724,725] and vice versa [726–731].
Mn spin beats were observed by Crooker et al. (see Fig. 35) [724,725] and theoretically studied by Linder and Sham [732].
Historically, carrier spin dynamics was first studied in (II, Mn) VI diluted magnetic semiconductors. In these materials no

charge doping is invoked, as Mn⇒ Mn2++2e−. At high doping density and low temperature the Mn–Mn interaction leads
to a spin-glass order. However, at high temperature or low doping density it is paramagnetic. The bandgap also changes
with Mn doping. For example in CdMnTe, the bandgap increases with Mn doping density. A widely studied system is
the Cd1−xMnxTe/Cd1−yMnyTe quantum well, where the layer with higher Mn density serves as barrier. A particular case
is x = 0, the s(p)–d exchange interaction is then incorporated through the wavefunction penetrating into the barrier
layers. The s(p)–d exchange interaction can then be engineered by tuning the structure [733]. Another example of such
a structure is to insert MnSe layers into ZnCdSe quantum wells [447]. Crooker et al. found that the s(p)–d exchange
interaction changes significantly with the number of MnSe layers [in their experiment, they used 1 (×3 atomic layer), 3 (×1
atomic layer) and 24 (×1/8 atomic layer) layers of MnSe] in a ZnCdSe quantum well while keeping the overall Mn doping
density unchanged [447]. The modification of the s(p)–d exchange interaction comes from tuning the overlap between
the confined electrons/holes and Mn ions by structure engineering. Another reason is that the Mn–Mn antiferromagnetic
coupling between neighboring Mn spins which ‘‘locks’’ the Mn spins is largely suppressed in 1/8 MnSe sub-monolayers as
the average distance betweenMn spins increases. Interestingly Smyth et al. found that the spin subband of the ZnMnSe/ZnSe
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Fig. 35. Induced Faraday rotation ΘF , showing the final oscillations of the electron spins superimposed on an induced precession of the Mn spins. From
Crooker et al. [724].

superlattice can be significantly modified by an external magnetic field [734]: Due to the giant Zeeman splitting, the spin-
down subband is lowered and the spin-up subband is raised. At the thresholdmagnetic field Bc , the spin-up subband energy
is as high as the barrier energy. Above Bc the spin-up electrons switch into the ZnSe layers. The spin and electronic structure
is then tuned by the external magnetic field. In a parabolic ZnSe/ZnCdSe quantum well with MnSe monolayers inserted,
Myers et al. demonstrated that the s–d exchange interaction can be manipulated by the gate voltage [735]. As the s(p)–d
exchange interaction is tuned, the carrier spin dynamics is also manipulated [447,734–736].
Femtosecond pump-probe measurements were first performed by Freeman et al. [733], revealing a very short spin

relaxation time of∼3 ps in Cd1−xMnxTe/Cd1−yMnyTe quantumwells [733,737]. After that, Bastard and Chang [448], Bastard
and Ferreira [703] presented theoretical studies on spin relaxation due to the s–d exchange interaction in such quantum
wells. They obtained a comparable spin lifetime to experiments. They also predicted a well width dependence of spin
lifetime and proposed a bias double-quantum-well structure to manipulate the spin lifetime. Interesting behavior was
observed under magnetic field. As the neighbor Mn ions are coupled antiferromagnetically, Mn ions can link together to
form clusterswhich have small spinmomentums and become ineffective in spin–flip scattering. Hence, only isolatedMn ions
count. Bastard and Chang took an effective Mn density as neff = x(1− x)12N0 to warrant only Mn ions without any nearest
neighbors. Akimoto et al. [736] found that electron spin relaxation rate in CdTe/CdMnTe quantum wells is proportional to
the probability of finding an electron in the barrier layer of CdMnTe,which is consistentwith the theory of Bastard and Chang
[448]. As stated in the previous paragraph, the spin-up subband is raised higher than the spin-down one. Hence spin–flip
scattering from up-spin to down-spin is more favorable than the opposite way at low temperature. Smyth et al. reported
that the spin–flip time of the spin-up electron decreases with increasing magnetic field whereas that of spin-down electron
increases: the spin–flip times vary with magnetic field as two branches [734]. A similar behavior was observed in other
diluted magnetic heterostructures (see inset of Fig. 36) [447,738–742]. Such two-branch behavior weakens with increasing
excess photo-carrier energy or decreasing exchange interaction [738,741]. Both electron and hole spin lifetimes were found
to be smaller in diluted magnetic heterostructures compared to the nonmagnetic ones [724], which indicates the relevance
of the s(p)–d exchange interaction to the spin relaxation.
Theoretically, the spin relaxation rate can be calculated from the Fermi Golden rule [451,452],

Γk↑,k′↓ = 2π |〈k ↑ |Hs−d|k′ ↓〉|2δ(εk↑ − εk′↓). (125)

The spin–flip rates are

τ−1
↑→↓
= 〈Γk↑,k′↓(1− fk′↓)〉, τ−1

↓→↑
= 〈Γk↓,k′↑(1− fk′↑)〉. (126)

Here ↑→↓ (↓→↑) denotes the spin-up to spin-down (spin-down to spin-up) transition. 〈. . .〉 means average over the
electron ensemble. The total spin relaxation rate is τ−1s = τ

−1
↑→↓
+ τ−1
↓→↑
. For example in quantum wells at zero magnetic

field [111,744,745],

τ−1s = IsxN0 J
2
sdme〈〈S

d
−
Sd
+
+ Sd
+
Sd
−
〉〉/(4Lw), (127)

where Jsd is the s–d exchange constant, x stands for the mole fraction of Mn and N0 denotes the density of the unit cells.
Sd = (Sdx , S

d
y , S

d
z ) is Mn spin operator and S

d
±
= Sdx ± iS

d
y . 〈〈. . .〉〉 stands for average over Mn spin distribution. Here

Is = Lw
∫
|ψ
↑

e (z)|2|ψ
↓

e (z)|2dz with ψ
↑(↓)
e being the spin-resolved electron subband wavefunction and Lw denoting the well

width. At the equilibrium state, 〈〈Sd
−
Sd
+
+Sd
+
Sd
−
〉〉 =

4
3Sd(Sd+1). As to the two spin–flip transition rates, τ

−1
↑→↓
∝ 〈〈Sd

−
Sd
+
〉〉 =

Sd(Sd + 1)− 〈〈(Sdz )
2
〉〉 − 〈〈Sdz 〉〉whereas τ

−1
↑→↓
∝ 〈〈Sd

+
Sd
−
〉〉 = Sd(Sd + 1)− 〈〈(Sdz )

2
〉〉 + 〈〈Sdz 〉〉. In the presence of a magnetic

field along the z axis, theMn spin polarization 〈〈Sdz 〉〉 < 0. This enhances the spin-up to spin-down transition but suppresses
the inverse process. The calculation of Egues andWilkins indicated that the phase-space-filling effect (Pauli blocking factor
(1 − fk′↑(↓))) further enhances the difference between the two spin–flip scattering rates (see Fig. 36) [743]. It is noted that
the total spin relaxation rate is proportional to Sd(Sd + 1) − 〈〈(Sdz )

2
〉〉 which decreases with increasing magnetic field. The
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underlying physics is that the magnetic field pins the Mn spin and then suppresses the spin–flip processes and electron
spin relaxation [746,747]. Magnetic field effects on electron/hole/exciton spin–flip scattering rates at low temperature in
CdMnTe quantum wells was investigated comprehensively by Tsitsishvili and Kalt [745]. In most cases the magnetic field
dependence of spin relaxation rate is weak. Unlike a longitudinal magnetic field, a transverse magnetic field always leads
to faster spin relaxation (for both electrons and holes) (see Fig. 37) [449,724,725,748–750]. This is because the magnetic
field pinning of Mn spins along transverse direction increases the factor Sd(Sd + 1) − 〈〈(Sdz )

2
〉〉 = 〈〈(Sdx )

2
+ (Sdy )

2
〉〉 [111,

744]. Electron spin relaxation is enhanced for exciton bound electrons as the center-of-mass effective mass is larger for the
exciton. This was first predicted by Bastard and Ferreira [703] and then confirmed experimentally by Smits et al. [749]. The
temperature dependence of electron, hole and exciton spin relaxation has been studied in Refs. [450,749,751,752]. Smits
et al. presented a systematic experimental study on excitonic enhancement of electron/hole spin relaxation in CdMnTe
based quantum well structures [749].
Recently, Rönnburg et al. presented a systematic experimental investigation on electron spin relaxation in bulk CdMnTe.

Their major results are shown in Figs. 38 and 39. In the experiment, the photon energy was chosen to be centered on the 1s
exciton absorption lines and the photo-excitation intensity was kept low in order to minimize sample heating and carrier-
density-dependent effects. A salient feature is that the electron spin lifetime increases with temperature, which signals
a motional-narrowing spin relaxation mechanism. This is quite different from the previously considered s–d exchange
scatteringmechanismwhere the electron spin relaxation rate in the bulk system is proportional to 〈k〉, which increases with
temperature. Rönnburg et al. then presented a new theory of spin relaxation based on the thermal and spatial fluctuation
of the s–d mean field. The transverse spin relaxation rate is given by

1
T2
= γ 2τ0

[
〈(δMz)2〉 +

(
〈(δMx)2〉 + 〈(δMy)2〉

)
/2

1+ (geµBB+ γ 〈δMz〉)2τ 20

]
, (128)

where γ = Jsd/(gMnµB), M = (Mx,My,Mz) is the (Mn spin) magnetization and δMi (i = x, y, z) denotes the fluctuation
of magnetization felt by optically excited electrons. τ0 stands for the correlation time of the fluctuations. ge is the intrinsic
g-factor of the itinerant electrons. By working out the thermal and spatial fluctuations, the spin relaxation rate is given
explicitly as [450]

1
T2
=
γ 2τ0

Nex

[
n0xkBTχ(B, T )+ 〈Mz〉2 +

n0xkBT [3χ(0, T )− χ(B, T )] − 〈Mz〉2

2+ 2(geµBB+ γ 〈δMz〉)2τ 20

]
. (129)
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Fig. 37. Electron (left) and hole (right) spin lifetime as function of transverse magnetic field for a nonmagnetic (NM) (Zn0.77Cd0.23Se/ZnSe) quantum well
and also that for a quantumwell with 1×3, 3×1 and 24×1/8MnSemonolayers inserted (for the details of the heterostructures see Ref. [724]). T = 4.6 K.
From Crooker et al. [724].

Here χ(B, T ) = ∂〈Mz (B,T )〉
∂B is the susceptibility. 〈. . .〉 denotes the thermal average of Mn spins. By assuming the spatial

fluctuation to be a Poisson distribution, it gives the amplitude of the spatial fluctuation 〈(δMi)2〉sf = 〈Mi〉2 (i = x, y, z).
According to the central limit theorem, the fluctuation is reduced by the number of Mn spins felt by the electron wave-
packet Nex. In intrinsic bulk CdMnTe at low temperature, electrons and holes are bound together to form excitons. The
spatial extension of the exciton-bound electron wave-packet is controlled by two factors: the exciton Bohr radius and the
thermal length Lth of the center-of-mass motion. The latter is estimated as the inverse of the thermal fluctuation of the
center-of-mass wave-vector, Lth = 0.37/

√
mkBT , with m = me + mh. Taking into account these two factors, one obtains

the volume of the wave-packet Vex and then the number of Mn spins within the volume Nex = xn0Vex. The correlation time
also consists of two contributions, 1/τ0 = 1/τprop + 1/τMnsf . τ

Mn
sf is the Mn spin–flip time, which is at least several hundreds

of picoseconds [725] and hence ineffective. τprop denotes the exciton propagation time, which is the time for an exciton to
see a new environment of Mn spins. It is approximated as the time for an exciton to propagate a distance equal to its spatial
extension with a thermal average velocity. In such a way τ0 is determined. By taking parameters in the literature, Rönnburg
et al. calculated the transverse spin lifetime and found that the calculated results agree remarkably well with experimental
data, both qualitatively and quantitatively (see Fig. 39). The Mn doping x dependence of T2 at small x shows 1/x behavior
as Mz , χ and Nex are proportional to x. At high Mn doping, the antiferromagnetic interaction between neighboring Mn
ions should be taken into account with a correction xeff = x(1 − x)12 [743]. This leads to the observed increase of T2 at
large x in Fig. 39. The magnetic field dependence also agrees well with the calculation (not shown). The initial decrease
of T2 with magnetic field is mainly due to the increase of 〈Mz〉2. At high magnetic field, χ(B, T ) and 〈Mz〉 saturate. The
magnetic field dependence then mainly comes from the factor 1/[2 + 2(geµBB + γ 〈δMz〉)2τ 20 ] which makes T2 increase
with B (Similar behavior was also observed in the experiment of Cronenberger et al. [753]). The magnetic field dependence
is more pronounced at low temperature where τ0 is larger and the magnetic field dependence of 〈Mz〉 is stronger.
The Mn density dependence is informative and reveals the underlying spin relaxation mechanisms. In CdMnTe quantum

wells, the spin relaxation rate was found to be proportional to x for x > 4 × 10−3, indicating spin relaxation due to the
s–d exchange scattering (see Fig. 40) [449]. However, in GaMnAs quantum wells Poggio et al. found that spin lifetime first
increases and then decreases with increasing Mn density. A peak appears around x ∼ 10−4 for well widths from 3 to 10 nm
(see Fig. 41) [233]. It was speculated that the dominant spin relaxation mechanisms for Mn densities below and above
the peak density are different. However, calculation based on realistic parameters is needed to determine the relevance of
various mechanisms. Such a calculation has been done by Jiang et al. recently [111].
Relaxation dynamics of spin-polarized electrons excited at higher energy subbands was revealed by the probe-energy

dependence of the spin lifetime in Ref. [754]. The probe-energy dependence is understood by the intraband electron energy
relaxation and subsequent spin relaxation. Energy-resolved spin relaxation in thewurtzitemagnetic semiconductor CdMnSe
was studied in Ref. [755].
At low temperature, the Mn ion can bind a hole to form a neutral center. Hence optically excited electrons interact

with the neutral centers rather than the Mn ions and holes separately. The ground state of the neutral center is a two-fold
degenerate state with angular momentummJ = ±1, as the p–d exchange interaction is anti-ferromagnetic.68 The exchange

68 Such a spin structure can be utilized to establish optical initialization and readout of Mn spin [98] as circularly polarized light (with spin σJ = ±1)
selectively excites themJ = ±1 state due to the optical selection rules.
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interaction between the electron and the neutral center has two origins, the s–d exchange interaction and the electron–hole
exchange interaction. Interestingly, both interactions are ferromagnetic. Due to opposite Mn and hole spin orientations, the
whole exchange interaction is weakened.69 The cancelation of the two exchange interaction leads to suppression of spin
relaxation. As GaMnAs is a partially compensated semiconductor, i.e., interstitial Mn’s act as donors whereas substitutional
Mn’s act as acceptors, the hole density is smaller than the Mn acceptor density. Hence there are still some charged Mn
acceptors. Recently, Astakhov et al. found that the exchange interaction can be further reduced by generating more holes
via optical pumping. They found that below some threshold excitation power, spin relaxation is suppressed by increasing
the optical excitation power (see Fig. 42) [757]. A picture of localized electrons was presented in their paper to explain the
results at low temperature. In such a picture, the spin relaxation is due to random spin precessionwhen electrons pass by the
neutral centers. The spin relaxation rate is 1/τs = 2

3 〈ω
2
〉τc , where τc is the correlation time. In the presence of a longitudinal

magnetic field, spin relaxation is suppressed by a factor of 1/[1 + (ωLτc)2]. By measuring the longitudinal magnetic field
dependence, Akimov et al. found that τc in GaMnAs ismuch longer than that in GaAs:Gewith similar acceptor concentration.

69 This leads to a deviation of the s–d exchange constant deduced from the measured electron spin precession frequency from the genuine s–d exchange
constant [756].
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Fig. 40. Electron spin relaxation rates vs.Mn effective content xeff for a QW width Lw = 8 nm: experimental data (crosses), calculated values (solid line).
From Camilleri et al. [449].

Fig. 41. The transverse electron spin lifetime T ∗2 at T = 5 K versus the percentage of Mn x for four quantumwell sample sets of various widths. The plotted
values of T ∗2 are the mean values from magnetic field B = 0 to 8 T, and the error bars represent the standard deviations. From Poggio et al. [233].

They explained that the strong exchange coupling between theMn acceptor and the hole protects hole spin from dissipation
and the correlation time of random electron spin precession is only limited by electron hopping, leading to a large τc [758].
Hole spin relaxation in dilutedmagnetic quantumwells and heterostructures was studied in Refs. [449,724,725,749]. For

heavy-holes, the p–d exchange interaction is not able to flip hole spin unless facilitated by heavy-light hole mixing [702].
It was reported that spins of exciton-bound holes relax faster than free holes due to enhanced heavy-light hole mixing in
excitons [749]. Also the mixing is increased by the mean field of the p–d interaction. Camilleri observed a relation for the
hole spin relaxation rate 1/τ hs ' a(xeff〈M〉)

2
+ b where xeff is the effective (isolated) Mn mole fraction, 〈M〉 denotes the

magnetization and b stands for the heavy-light hole mixing independent of 〈M〉 and other spin relaxation sources [449].
Hole spin relaxation always decreases with increasing magnetic field [449,724,725,749]. A theoretical investigation of hole
spin relaxation is presented in Refs. [702,745].

4.4. Spin relaxation in Silicon and Germanium in the metallic regime

Spin relaxation in silicon and germanium is an old topic. Spin relaxation of donor bound electrons has been studied
intensively since the middle of last century [453,759–764] and revisited in recent decades in the context of quantum
computation [289,416,417,460,765,766]. In this subsection, we focus on spin relaxation in silicon and germanium in the
metallic regime.
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Fig. 42. (a) Spin relaxation time τs vs. excitation power for GaAs:Mn (NMn = 8 × 1017 cm−3) (dots) and for p-GaAs containing nonmagnetic acceptors
(Na = 6 × 1017 cm−3) (open squares). (b) Spin lifetimes vs. temperature for different excitation powers in GaAs:Mn. Curves are to guide the eyes. From
Astakhov et al. [757].

Let us first start with bulk silicon.70 As silicon possesses space inversion symmetry, the spin–orbit coupling term of
the conduction band is zero. Hence the D’yakonov–Perel’ mechanism is absent. In n-doped silicon, the only relevant spin
relaxation mechanism is the Elliott–Yafet mechanism. Experimentally, electron spin relaxation in bulk silicon was mostly
studied via electron spin resonance, as the optical orientation and detection method is forbidden due to its indirect band
gap nature. Most of the investigations focused on the low temperature regime [767–770], whereas only a few covered the
high temperature regime [763,771]. Among theseworks, a systematic investigationwas performed by Lépine [763]. Analysis
indicated that the spin relaxation scenario varies with temperature.71 At high temperature (T > 150 K) most of electrons
are in extended states and spin relaxation is dominated by band electrons other than donors. Theoretically, conduction
band electron spin relaxation in silicon was first studied separately by Elliott [104] and Yafet [103]. The Elliott–Yafet spin
relaxation consists of both the Elliott process, where spin–flip is due to the spin-mixing of conduction band, and the Yafet
process, where spin–flip is caused by direct spin–phonon coupling. By taking into account of the Yafet process due to
intravalley electron-acoustic phonon scattering, Yafet gave a qualitative relation of τs ∼ T−

5
2 [103]. Recently, Cheng et al.

found that the Elliott process and the Yafet process interfere destructively in silicon. The total spin relaxation rate is much
slower than that predicted by the individual Yafet or Elliott process [362]. They gave a new qualitative relation of τs ∼ T−3,
which agrees quite well with experiments [362] (see Fig. 43).
Two-dimensional structure can introduce structure and/or interface inversion asymmetry which induces the spin–orbit

coupling in conduction band. Spin–orbit coupling in silicon or germanium quantum wells was studied in Refs. [290–293,
772]. Correspondingly, the D’yakonov–Perel’ spin relaxation in two-dimensional structures was investigated in Ref. [290].
Experimentally, Tyryshkin et al. measured spin echoes and deduced a spin coherence time up to 3µs for a highmobility two-
dimensional electron system formed in Si/SiGe quantum wells [773]. The angular dependence of spin relaxation indicated
that the D’yakonov–Perel’ mechanism due to the Rashba spin–orbit coupling is the relevant one in high mobility samples
[295,296,773]. Like that in bulk silicon, spin relaxation in two-dimensional silicon structures was also studied mostly via
electron spin resonance [295–297,622,774–780]. Recently, electrically detected spin resonance has also been developed and
applied to silicon two-dimensional structures [287,781,782].
The dependence of spin lifetime on the orientation of external magnetic field was studied in Refs. [296,622,776],

revealing the relevance of the D’yakonov–Perel’ spin relaxation mechanism in high mobility samples. Examination of the
relation between the spin lifetime and the momentum scattering rate indicated that in low mobility samples the spin
relaxation is dominated by the Elliott–Yafet mechanism [297].72 Temperature and density dependences of spin relaxation

70 There are few studies on bulk germanium in the metallic regime.
71 The analysis has been summarized in Ref. [21].
72 The relation between spin lifetime and momentum scattering time was also studied in Refs. [295,622].
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Fig. 43. Spin relaxation time T1 in bulk silicon as a function of temperature T . The solid curve is the calculation (Pseudo), the symbols are the spin injection
(SI Appelbaum) [150] and the electron spin resonance (ESR Lepine [763] and ESR Lancaster [771]) data (see Ref. [22]). The dashed-dotted curve is the spin
lifetime calculatedwith only the intravalley scattering (Intra). The inset shows the contour plot of the spin relaxation rate T−11 of hot electrons, as a function
of the electron energy ε and lattice temperature T . From Cheng et al. [362].

rate were studied in Refs. [295,622,774] and [295] respectively. Spin relaxation can be suppressed by cyclotron motion as
demonstrated byWilamowski et al. [622]. Spin relaxation in the quantumHall regimewas studied byMatsunami et al. [782].
Theoretically, Sherman pointed out that even in nominally symmetric silicon quantumwells, the doping inhomogeneity

can cause a random spin–orbit coupling [294]. Such an effect may play an important role in spin relaxation in symmetric
silicon quantum wells [294,657]. Similarly, the surface roughness can also induce a random spin–orbit coupling due to
interface inversion asymmetry [291]. Hole spin–orbit coupling in silicon quantum wells was discussed in Refs. [298,299].
The effect of carrier–carrier scattering on the D’yakonov–Perel’ spin relaxation in n-type silicon quantum wells [783] and
p-type silicon (germanium) quantum wells [299] has also been reported in the recent literature.

4.5. Magnetization dynamics in magnetic semiconductors

Magnetic semiconductors, especially the Mn doped III–V magnetic semiconductors, have attracted much attention for
decades. The invention of ferromagnetic III–V semiconductors opens the perspective of integrating the magnetic recording
and electronic circuit on one chip and has inspired many studies [114,784–787]. As the ferromagnetic order in III(Mn)-V
magnetic semiconductors originates from the carrier mediated Mn spin–spin interactions via the strong s(p)–d exchange
interactions [114], the manipulation of carriers would lead to efficient control over the magnetization. The efficient
manipulation of magnetization via optical [788–808] and electrical [809–812] means has been realized.
In this subsection we review recent studies on optically induced magnetization dynamics in III(Mn)-V ferromagnetic

semiconductors. Historically, the optically induced magnetization dynamics was first discovered in ferromagnetic metal
(nickel) [813]. The studies in metal have some relation with those in ferromagnetic semiconductors, which hence should
also be mentioned. After more than a decade of study, the picture of the underlying physics has been discovered and some
useful models have been raised. However, studies which can quantitatively relate the microscopic carrier dynamics with
the observed macroscopic magnetization dynamics are still absent.
We first review optically induced magnetization dynamics in ferromagnetic metals. Let us start from the observed

phenomena. In experiments, strong femtosecond laser pulses (usually ∼ 1 mJ cm−2) are used to pump the ferromagnetic
materials. The magnetization is then monitored by probe pulses via the magneto-optical Kerr effect. The relative
magnetization M(t)/M(0) is assumed to be proportional to the relative Kerr rotation θ(t)/θ(0), where θ(0) [M(0)] is
the Kerr rotation (magnetization) before pumping. A typical curve is shown in Fig. 44. The magnetization dynamics is
characterized by three stages: (i) an ultrafast demagnetization within 1 ps; (ii) a recovery of magnetization via equilibration
processes such as electron–phonon scattering, from 1 ps to ∼ 20 ps; (iii) after ∼ 20 ps a damped precession of the
magnetization due to the effective exchange field [814,815]. The characteristic time scale of these stages are the ultrafast
demagnetization time τM , the energy lifetime τE and the Landau–Lifschitz–Gilbert damping time τLLG. In Nickel, τM ∼ 100 fs,
τE ∼ 0.5 ps, and τLLG ∼ 700 ps [815]. Many works have been devoted to studying the magnetization dynamics by various
methods to reveal the underlying mechanism and the dependences of the dynamics on the external conditions [813–820].
It was found that the magnetization in stage (ii) is governed by the hot-electron temperature, which agrees well with the
static M(T ) curve [816]. The damped precession of the magnetization in stage (iii) was found to be due to the deviation
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Fig. 44. Main: experimental development of the induced perpendicular component ofM,∆Mz/Mz , after laser heating a nickel thin film at t = 0. Insets:
precession of an individual spin in the exchange field (left) and of M in the effective field (right). τM , τE and τLLG denote the demagnetization time, the
energy relaxation time and the Landau–Lifschitz–Gilbert damping time, respectively. The three stages of the magnetization dynamics are clearly seen.
From Koopmans et al. [815].

of the magnetization direction from the equilibrium one caused by the laser pumping [815]. Among these processes, the
ultrafast demagnetization and the magnetization precession have attracted much attention in uncovering the underlying
microscopic mechanisms.
The ultrafast demagnetization in ferromagnetic metals is the first announcement that attracted the attention of

researchers. It was first discovered by Beaurepaire et al. in nickel in 1996 [813]. The magnetization decreases by 50% within
.100 fs, which is the fastest magnetization dynamics ever found. The large ‘‘instantaneous’’ demagnetization has puzzled
researchers, as a previous measurement yielded a spin-lattice lifetime of ∼100 ps [821]. Purely electronic mechanisms,
such as electron–magnon scattering, were also suggested to explain the ultrafast demagnetization. However, although the
pure electronic processes can flip individual electron spins rapidly [822], they conserve the total spin of the electron system
and hence can not lead to demagnetization [814,817]. Koopmans et al. first suggested that the measured optical signal at
the first picosecond does not reflect the magnetization dynamics, but only reflects the optical dynamics [814]. They found
that the relative change in the Kerr rotation does not coincide with that in Kerr ellipticity within the first 0.5 ps, which
makes it distinct from the magnetization induced Kerr effect. Hence the ‘‘instantaneous’’ decrease of the Kerr rotation or
ellipticity can not be directly related to the demagnetization [814]. A close examination indicated that the photo-excited
electrons thermalize also within the first picosecond [814]. A more direct and reliable measurement of the spin dynamics
via X-ray magnetic circular dichroism observed a demagnetization time of ∼ 120 fs [818]. In the same experiment, the
photo–electron thermalization time was identified as∼ 640 fs. At this stage, the time scale of the magnetization dynamics
is faithfully characterized. However, the demagnetization mechanism is still unclear. Although several mechanisms and
models have been proposed [813,815,823–825], they have not yet been confirmed by experiments unambiguously.
The focus of this subsection is the photo-induced magnetization dynamics in ferromagnetic III(Mn)-V semiconductors.

One significant difference is that themagnetization is provided by theMn spin, hence themagnetization and carrier degrees
of freedom are separated. Furthermore, unlike the complex energy bands in metals, the energy bands in ferromagnetic
III(Mn)-V semiconductors are well described by the Kane model with the s(p)–d exchange interaction [114], which greatly
simplifies the theoretical study. Theoretical studies can then help to identify the underlying mechanisms of the photo-
induced magnetization dynamics [99,826–828].
Experimentally, laser-induced demagnetization in (III, Mn)V ferromagnetic semiconductors was first studied by Kojima

et al. [807] in GaMnAs. The magnetization dynamics was monitored via the magneto-optical Kerr rotation. They observed
a slow demagnetization time of ∼ 500 ps, which was attributed to the possible thermal isolation between the charge
and spin system in GaMnAs [807]. The sub-picosecond ultrafast demagnetization in ferromagnetic semiconductors was
first demonstrated by Wang et al. [788] in InMnAs with much higher intensity (&1 mJ/cm−2 per pump pulse) than the
one in the experiment of Kojima et al. (45 µJ/cm−2). A typical trace of the time-resolved Kerr rotation is illustrated in
Fig. 45. The phenomena are similar to that in ferromagnetic metals: a sub-picosecond (∼ 200 fs) demagnetization and a
long time recovery. However, it is noted that the magnetization further decreases after the first 1 ps, in contrast with the
rapid recovery in ferromagnetic metals [815]. In InMnAs, this slow demagnetization process can last for several hundreds of
picoseconds at low pump fluence.With increased pump fluence the duration of the slow demagnetization process decreases
whereas the decay rate increases. Meanwhile the degree of demagnetization due to the fast process increases. At high
pump fluence& 10mJ/cm2, the magnetization is completely quenched after the fast process and the slow demagnetization
diminishes. The slow demagnetization process is assigned to the Mn spin-lattice relaxation in the existing literature [788].
The arguments are as follows: In III(Mn)-V ferromagnetic semiconductors the large hole spin polarization blocks the carrier-
Mn spin–flip scattering, hence the Mn spin system is thermally isolated [807]. On the other hand, the carrier system is
efficiently coupled to the phonon bath via the carrier-phonon interaction at a time scale of .1 ps. The thermalized phonon
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Fig. 45. (a) The first 3 ps of demagnetization dynamics in InMnAs. The shadowed region denotes the cross correlation of the pump and probe pulses.
(b) Demagnetization dynamics covering the entire time range of the experiment. ∆θK is the derived difference Kerr rotation which is supposed to be
proportional to the induced magnetization change along the growth direction. FromWang et al. [788].

Fig. 46. Illustration of the microscopic process of ultrafast demagnetization. × denotes the p–d exchange scattering. Thin arrow denotes the spin
polarization direction of photo-excited holes. Bold arrow represents the initial magnetization direction. Each p–d exchange scattering reduces the
magnetization and transfers the spin polarization into the hole system. Holes lose their spin polarization quickly through the D’yakonov–Perel’ (DP) and
Elliott–Yafet (EY)mechanisms. During these processes, the efficient hole–longitudinal-optical-phonon scattering [denoted as blue arrow (LO) in the figure]
relaxes the excess energy of the photo-excited holes. After the energy relaxation, hole spin relaxation slows down (the hole–longitudinal-optical-phonon
scattering also slows down) and becomes less efficient than the p–d exchange scattering. Hole spin polarization then saturates and the cascade processes
terminate.

bath then leads to a Mn spin-lattice relaxation at the time scale of 100 ps, which results in the slow demagnetization
process [807].
We now focus on the fast demagnetization process. The underlying physics of the ultrafast demagnetization is illustrated

in Fig. 46. The key process is that via the strong p–d coupling the Mn spin polarization is efficiently transferred to the hole
spin polarization, which is similar to the inverse Overhauser effect [826]. However, such processes are suppressed if the
hole spin relaxation rate is smaller than the rate at which the spin polarization is injected from the Mn spin system via the
p–d exchange scattering. Efficient hole spin relaxation is required for a ultrafast demagnetization. It is known that hole spin
relaxation is very fast in bulk p-GaAs, on a time scale of 100 fs, due to the strong spin–orbit coupling [207,210]. However, in
III(Mn)-V ferromagnetic semiconductors, the large spin splitting due to the mean p–d exchange field removes the Γ point
degeneracy and suppresses the effect of the spin–orbit coupling at low kinetic energy [3,21]. Fortunately for photo-excited
holes, of which the kinetic energy is high [788], the spin–orbit splitting is larger than the exchange splitting. The hole spin
relaxation can again be very efficient. The fast spin relaxation of photo-excited holes facilitates the ‘‘inverse Overhauser
effect’’ and leads to the ultrafast demagnetization. Due to the hole–phonon and hole–hole scattering, the photo-excited
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holes soon lose their energy and thermalize within 1 ps. After the energy relaxation process, the ultrafast demagnetization
is terminated. Such scenario has been laid out in recent studies [790,826].73

In Ref. [826], Cywinski et al. developed amean field theory to describe the above scenario of ultrafast demagnetization. In
their theory, the magnetization was described by the mean Mn spin polarization, which was then characterized by a single
Mn spin density matrix. The Mn–Mn correlations beyond the mean field level were argued to be averaged out in such a
strong carrier excitation regime. The instantaneous Mn and hole spin splitting was provided by the mean field of the p–d
exchange interaction. The hole dynamics was then described by the spin-resolved distribution function fnk, with n denoting
the (spin) band index. The magnetization dynamics was obtained, in principle, by solving the coupled kinetic equations of
holes and Mn spin. The ‘‘inverse Overhauser effect’’, i.e., the transfer of spin polarization from the Mn spin system to the
hole spin system due to the nonequilibrium hole distribution triggered by the photo-excitation, was then included in the
kinetic equation. Within such a model, the Mn spin–flip rate due to the ‘‘inverse Overhauser effect’’ (from them state to the
m± 1 state with−5/2 ≤ m ≤ 5/2 being the Mn spin index) can be written as [826]

Wm,m±1 =
β2

4
2π |〈m|S∓|m+ 1〉|2

∑
nn′

∫
dk
(2π)3

dk′

(2π)3
|〈n′k′|s±|nk〉|2fnk(1− fn′k′)δ(ε̃nk − ε̃n′k′ ±∆M), (130)

where β is the p–d exchange constant and S± (s±) are the Mn (hole) spin ladder operators. ∆M represents the Mn
instantaneous mean field spin splitting produced by the holes. ε̃nk is the instantaneous band energy with the mean
field exchange interaction included. By considering the hole energy- and spin-relaxation in a phenomenological way, the
magnetization dynamics was solved within a simplified two band hole approximation [826]. The results reproduced the
main features of the ultrafast demagnetization: (i) the process is terminated at the time scale of hole energy equilibration
time τE [826]; (ii) the demagnetization rate and the degree of the magnetization change increase with the pump fluence
and hole spin relaxation rate [826]. The obtained demagnetization time is on the order of 1 ps [826]. The feature of the
magnetization dynamics also qualitatively agreeswith the observation in experiments [790,826]. Further calculations based
on realistic band structure and microscopic interactions, such as have been done in the paramagnetic phase in Ref. [111],
are needed to elucidate the underlying physics unambiguously and to compare with the experimental results.
At low pump fluence, such as ∼10 µJ cm−2 (compared to the fluence &1 mJ cm−2 used in demagnetization

measurements), rich magnetization dynamics is triggered by photo illumination. Damped precession of the magnetization
was observed, where the driving force was attributed to the photo-induced change in the magnetic anisotropy energy [751,
797,800–802,804,805,829,830]. It was also discovered that the magnetization precession can be coherently manipulated by
photo pulses [798,799]. Furthermore, with circularly polarized light, the magnetization is rotated due to the p–d exchange
mean field produced by the photo-injected hole spin polarization [751,797,803]. The photo-induced change in themagnetic
anisotropy energy has been argued to originate from: (i) the change of the temperature of the hole gas due to hot photo-
excited holes [800]; (ii) the change of the hole density [829]; (iii) the nonthermal effect [805]. The dependence of the
precession frequency (closely related to the magnetic anisotropy energy) and damping constant (the Gilbert constant)
were hence studied for various photo intensities, temperatures and hole densities, and compared with theoretical results
[827,828,831]. It should be mentioned that there are other mechanisms which can also trigger such magnetization
precession, such as the photo-induced spin precession due to the interband polarization proposed by Chovan and Perakis
[99]. Very recently Kapetanakis et al. [832] developed a nonequilibrium theory based on the original idea of Ref. [99] and
explainedwell the experimental results ofmagnetization precession [791]. In fact,within the first picosecond, the hot photo-
excited holes can alsomodify themagnetization direction besides changing themagnetization amplitude (demagnetization)
due to the fact that in the presence of hole spin–orbit coupling the total (hole+Mn) spin polarization is not conserved. Once
the magnetization direction deviates from the equilibrium one, a damped precession is motivated by the effective magnetic
field due to the external and internal (anisotropy) magnetic fields [814].

5. Spin relaxation and dephasing based on the kinetic spin Bloch equation approach

In this section, we introduce a fully microscopic many-body approach named the kinetic spin Bloch equation approach
developed by Wu et al. [44,332,349,350]. Unlike the approaches reviewed in the previous sections, which treat scatterings
using the relaxation time approximation, the kinetic spin Bloch equation approach treats all scatterings explicitly and self-
consistently to all orders. In particular, the carrier–carrier Coulomb scattering is explicitly included in the theory. This allows
them to study spin dynamics not only near but also far away from the equilibrium, for example, the spin dynamics in
the presence of a high electric field (hot-electron condition) [569] and with large initial spin polarizations [41,42,44]. This
section only focuses on the results in spatially uniform systems while those in the spatially non-uniform systems are given
in Section 7. We organize this section as follows: In Section 5.1 we first introduce the kinetic spin Bloch equation approach.
Then we address the effect of electron–electron Coulomb scattering on the spin dynamics in Section 5.2. The general kinetic
spin Bloch equations in n- or p-doped confined structures are given in Section 5.3, where we even include the case of a

73 Note that a similar picture of Mn ion spin relaxation in a ZnMnSe/ZnBeSe paramagnetic quantum well was also depicted in Ref. [730].
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Fig. 47. Illustration of the four-spin-band model: two conduction bands with spin ±1/2 and two valence bands with spin ±σ . The spin coherence ρ,
optical and forbidden optical coherences P as well as carrier distributions of the four bands are also illustrated.

spatial gradient.74 The results of spin relaxation and dephasing in quantum wells, quantum wires, and bulk samples are
reviewed in Sections 5.4–5.6, respectively.

5.1. Kinetic spin Bloch equation approach

5.1.1. Model and Hamiltonian
We first use a four-spin-band model to demonstrate the establishment of the kinetic spin Bloch equations and apply

these equations to investigate the spin precession and relaxation/dephasing. By considering a (001) zinc blende quantum
well with its growth axis in the z-direction and a moderate magnetic field along the x-direction (Voigt configuration), we
write the Hamiltonian of electrons in the conduction and valence bands as

H =
∑
µkσ

εµkc
Ď
µkσ cµkσ +

∑
µkσσ ′

gµB[B+ �µ(k)] · Sµσσ ′c
Ď
µkσ cµkσ ′ + HE + HI , (131)

with µ = c and v standing for the conduction and valence bands, respectively. Here we only include the lowest subbands
of the conduction and valence bands. This is valid for quantum wells with sufficiently small well widths. εvk = −Eg/2 −
k2/2mh = −Eg/2 − εhk and εck = Eg/2 + k2/2me = Eg/2 + εek with mh and me denoting effective masses of the hole
and electron, respectively. Eg is the band gap. For a quantum well without strain, the heavy hole band is above the light
hole one and hence the valence band to be considered is the heavy-hole band with Svσσ ′ representing spin 3/2 matrices and
σ = ±3/2. Scσσ ′ stands for the spin 1/2 matrices for conduction electrons. �µ(k) represents the effective magnetic field
from the D’yakonov–Perel’ term of the µ-band.
HE in Eq. (131) denotes the dipole couplingwith the light field E−σ (t)with σ = ± representing circularly polarized light.

Due to the selection rule

HE = −d
∑
k
[E−(t)c

Ď

ck 12
c
vk 32
+ H.c.] − d

∑
k
[E+(t)c

Ď

ck− 12
c
vk− 32
+ H.c.], (132)

in which d denotes the optical-dipole matrix element and Eσ (t) = E(0)σ (t) cosωt , with ω being the central frequency of the
light pulse. E(0)σ (t) denotes a Gaussian pulse with pulse width δt . HI stands for the interaction Hamiltonian. It contains both
the spin-conserving scattering, such as the electron–electron Coulomb, electron–phonon and electron–impurity scatterings,
and the spin–flip scattering, such as the scattering due to the Bir–Aronov–Pikus and Elliott–Yafet mechanisms.
It can be seen from HE that the laser pulse introduces optical coherence between the conduction and valence bands

Pk 12 32 ≡ eiωt〈cĎ
vk 32
cck 12 〉 and Pk− 12− 32 ≡ eiωt〈cĎ

vk− 32
cck− 12 〉. At the same time, due to the presence of the magnetic field

in the Voigt configuration, these optical coherences may further transfer coherence to Pk− 12 32 ≡ eiωt〈cĎ
vk 32
cck− 12 〉 and

Pk 12− 32 ≡ e
iωt
〈cĎ
vk− 32

cck 12 〉, for which the direct optical transition is forbidden. Due to the presence of the magnetic field

and/or effective magnetic field, if there is any spin polarization, i.e., fµkσ ≡ 〈c
Ď
µkσ cµkσ 〉 6= fµk−σ , electrons can flip from the

σ -band to the −σ -band, and hence induce a correlation between two spin bands, i.e., ρµkσ−σ ≡ 〈c
Ď
µk−σ cµkσ 〉 ≡ ρ∗µk−σσ .

Similar to the optical coherence, which is represented by Pkσσ ′ , the spin coherence can be represented well by ρµkσ−σ . In
the following we call it spin coherence. These coherences, as well as electron/hole distributions illustrated in Fig. 47, are the
quantities to be determined self-consistently through the kinetic spin Bloch equations.

5.1.2. Kinetic spin Bloch equations
We construct the kinetic spin Bloch equations using the nonequilibrium Green function method [833] as follows [350]

ρ̇µν,k,σσ ′ = ρ̇µν,k,σσ ′ |coh + ρ̇µν,k,σσ ′ |scat. (133)

74 For the case of spin diffusion and transport, see Section 7.
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Here ρµν,k,σσ ′ represents the single-particle density matrix with µ and ν = c or v. (µ and ν can also be subband
indices and/or valley indices.) The diagonal elements describe the carrier distribution functions ρµµ,k,σσ = fµkσ and
the off-diagonal elements either represent the optical coherence ρcv,k,σσ ′ = Pkσσ ′e−iωt for the inter conduction band
and valence band polarization, or the spin coherence ρµµ,k,σ−σ for the inter spin-band correlation. The coherent terms
ρ̇µν,k,σσ ′ |coh are composed of the contributions from the energy spectrum, electric pumping field, magnetic and/or effective
magnetic field as well as the Coulomb Hartree–Fock term. The scattering terms ρ̇µν,k,σσ ′ |scat consist of the spin-conserving
scatterings such as the electron–electron Coulomb, electron–phonon and electron–non-magnetic-impurity scatterings
and/or the spin–flip scatterings such as the scatterings due to the Bir–Aronov–Pikus and/or Elliott–Yafetmechanisms and the
hyperfine interaction. The detailed expressions of these termswill be given in the following subsections for different specific
problems.
By solving the kinetic spin Bloch Eq. (133) with the initial conditions:

ρµν,k,σσ ′(0) =

{
fµkσ (0) with µ = ν and σ = σ ′

0 with µ 6= ν and/or σ 6= σ ′
, (134)

one obtains the time evolution of the density matrix.

5.1.3. Faraday rotation angle, spin dephasing and spin relaxation
The Faraday rotation angle can be calculated for two degenerate Gaussian pulses with a delay time τ . The first pulse

(pump) is circularly polarized, e.g., E0pump(t) = E
0
±
(t), and travels in the k1-direction. The second pulse (probe) is linear

polarized and is much weaker than the first one, e.g., E0probe(t) ≡ χ [E
0
−
(t − τ) + E0

+
(t − τ)] with χ � 1. The probe pulse

travels in the k2 direction. The Faraday rotation angle is defined as [732,834]

ΘF(τ ) = C
∑
k

∫
Re[P̄k 12 32 (t)E

0
−

∗
(t − τ)− P̄k− 12− 32 (t)E

0
+

∗
(t − τ)]dt, (135)

with P̄kσσ ′ standing for the optical transition in the probe direction. C is a constant. The spin relaxation/dephasing can be
determined from the slope of the envelope of the Faraday rotation angleΘF(τ ). However, calculation of this quantity is quite
time consuming. In reality, we use the slope of the envelope of

∆Nµ =
∑
k
(fµk|σ | − fµk−|σ |), ρµ =

∑
k

∣∣ρµµ,k,|σ |−|σ |∣∣ , ρ∗µ =

∣∣∣∣∣∑
k
ρµµ,k,|σ |−|σ |

∣∣∣∣∣ , (136)

to substract the spin relaxation time T1, spin dephasing time T2 and ensemble spin dephasing time T ∗2 , respectively
[350,835]. Similarly, the optical dephasing is described by the incoherently summed polarization [346,833],

Pσσ (t) =
∑
k

∣∣Pk,σσ (t)∣∣ . (137)

The laterwas first introduced by Kuhn and Rossi [347]. It is understood that both true dissipation and the interference among
the k states may contribute to the decay. The incoherent summation is therefore used to isolate the irreversible decay from
the decay caused by interference.

5.2. Electron–electron Coulomb scattering to spin dynamics

It has long been believed that the spin-conserving electron–electron Coulomb scattering does not contribute to the
spin relaxation/dephasing [836]. It was first pointed out by Wu and Ning [334] that in the presence of inhomogeneous
broadening in spin precession, i.e., the spin precession frequencies are k-dependent, any scattering, including the spin-
conserving scattering, can cause irreversible spin dephasing. This inhomogeneous broadening can come from the energy-
dependent g-factor [225,226,334,837–840], the D’yakonov–Perel’ term [332], the random spin–orbit coupling [294], and
even the momentum dependence of the spin diffusion rate along the spatial gradient [336]. This can be illustrated from the
kinetic spin Bloch equations of a four-spin bandmodel in a quantumwell with the lowest valence band being the heavy-hole
band and ρcv,k,σσ ′ = Pkσσ ′e−iωt . When the D’yakonov–Perel’ term �(k) = 0, the coherent parts of the kinetic spin Bloch
equations are given by [334]
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∂ fekσ
∂t

∣∣∣∣
coh
= 2

∑
q
VqIm

(∑
σ ′

P∗k+qσσ ′Pkσσ ′ + ρcc,k+q,−σσρcc,k,σ−σ

)
− gµBBImρcc,k,σ−σ , (138)

∂ρcc,k,σ−σ

∂t

∣∣∣∣
coh
= i

∑
q
Vq
[
(fek+qσ − fek+q−σ )ρcc,k,σ−σ − (fekσ − fek−σ )ρcc,k+q,σ−σ

+ Pk+qσσ1P
∗

k−σσ1 − P
∗

k+q−σσ1Pkσσ1
]
+
i
2
gµBB(fekσ − fek−σ ), (139)

∂Pkσσ ′
∂t

∣∣∣∣
coh
= −iδσσ ′(k)Pkσσ ′ −

i
2
gµBBPk−σσ ′ − i

∑
q
Vq
[
Pk+qσσ ′(1− fhkσ ′

− fekσ )− Pk+q−σσ ′ρcc,k,σ−σ + Pk−σσ ′ρcc,k+q,σ−σ
]
, (140)

for electron distribution function fekσ ≡ fckσ , spin coherence and optical coherence, respectively. fhkσ ≡ 1− fvkσ is the hole
distribution function. The first term on the right hand side of Eq. (138) is the Fock term from the Coulomb scattering, with
Vq = 2πe2

q denoting the Coulomb matrix element. The first term of Eq. (140) gives the free evolution of the polarization
components with the detuning

δσσ ′(k) = εehk −∆0 −
∑
q
Vq(fek+qσ + fhk+qσ ′), (141)

in which εehk = εek + εhk and ∆0 = ω − Eg . ∆0 is the detuning of the center frequency of the light pulses with respect
to the unrenormalized band gap. The last term in Eq. (140) describes the excitonic correlations whereas the first term in
Eq. (139) describes the Hartree–Fock contributions to the spin coherence.
For spin-conserving scattering,∑

k

∂ρµν, k, σσ ′

∂t

∣∣∣∣
scat
= 0. (142)

By performing the summation over k from both sides of the kinetic spin Bloch equations and further noticing that the
Hartree–Fock contributions from the Coulomb interaction in the coherent parts of the kinetic spin Bloch equations satisfy∑

k

∂ρµν, k, σσ ′

∂t

∣∣∣∣HF
coh
= 0, (143)

one has

∂2

∂t2
Im
∑
k
ρcc,k,σ−σ = −g2µ2BB

2Im
∑
k
ρcc,k,σ−σ , (144)

∂

∂t
Re
∑
k
ρcc,k,σ−σ = 0. (145)

This shows that there is no spin dephasing in the absence of inhomogeneous broadening and spin–flip scattering. For optical
dephasing, δσσ ′(k) in Eq. (140) is k-dependent, i.e., here exists the inhomogeneous broadening. Therefore any optical-dipole
conserving scattering can lead to irreversible optical dephasing [833]. Similarly, if there is inhomogeneous broadening
in the spin precession, any spin-conserving scattering can lead to irreversible spin dephasing. As electron–electron
Coulomb scattering is a spin-conserving scattering, of course it contributes to the spin dephasing in the presence of the
inhomogeneous broadening [334].
Wu and Ning first showed that with the energy-dependent g-factor as an inhomogeneous broadening, the Coulomb

scattering can lead to irreversible spin dephasing [334]. In [001]-grown n-doped quantum wells, the importance of the
Coulomb scattering for spin relaxation/dephasing was proved by Glazov and Ivchenko [615] by using perturbation theory
and by Weng and Wu [44] from the fully microscopic kinetic spin Bloch equation approach. In a temperature-dependent
study of the spin dephasing in [001]-oriented n-doped quantum wells, Leyland et al. experimentally verified the effects of
the electron–electron Coulomb scattering [368,591]. Later Zhou et al. even predicted a peak from the Coulomb scattering in
the temperature dependence of the spin relaxation time in a high-mobility low-density n-doped [001] quantumwell [372].
This was later demonstrated by Ruan et al. experimentally [604].

5.3. Kinetic spin Bloch equations in n- or p-doped confined structures

In this sectionwe present the spin dynamics in n- or p-type confined semiconductor structures. In this case, we only need
to consider a simplified single-particle density matrix ρk which consists only of the electron/hole distribution functions and
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the inter-spin-band polarization (spin coherence). In the effective-mass approximation, the Hamiltonian of electrons in the
confined system reads

H =
∑
i

[He(Ri)+ eE · ri] + HI , (146)

He(R) =
P2

2m∗
+ Hso(P)+ V (rc)+

1
2
g∗µBB · σ, (147)

in which rc represents the coordinate along the confinement and R = (r, rc). P = −ih̄∇ − eA(R) is the momentum with
B = ∇ × A. Hso in Eq. (147) is the Hamiltonian of the spin–orbit coupling, which consists the Dresselhaus/Rashba term
as well as the strain-induced spin–orbit coupling. V (rc) represents the confinement potential. The energy spectrum of the
single-particle Hamiltonian (147) reads

He|k, n〉 = εn(k)|k, n〉 (148)

with n denoting the index for both subband [subjected to the confinement V (rc)] and spin. Hence |k, n〉 = |k〉|n〉k.
Due to the spin–orbit coupling, k〈n|n′〉k′ usually is not diagonal if k′ 6= k. The Hilbert space spanned by |k, n〉 is helix

space [597,841]. The kinetic spin Bloch equations in this space are very complicated. Usually we use the wavefunctions |n〉k
at a fixedk0 as a complete basis, i.e., {|n〉0}. Therefore, theHilbert space becomes {|k〉|n〉0}, which is complete and orthogonal.
We call this space collinear space. The eigenfunction |k, n〉 can be expanded in this space as

|k, n〉 =
∑
m
0〈m|〈k|k, n〉|k〉|m〉0. (149)

The matrix element of the Hamiltonian He in the collinear space reads

Enn
′

k = 0〈n|〈k|He|k〉|n′〉0. (150)

As |k〉|n〉0 in general is not the eigenfunction of He, Enn
′

k is not diagonal. eE · r in Eq. (146) is the driving term of the electric
field along the confinement-free directions. HI is the interaction Hamiltonian.
In the collinear space, the density operator can be written as

ρ(Q ) =
∑
k,n1n2

In1n2(qc)c
Ď
k+qn1ckn2 , (151)

in which In1n2(qc) = 0〈n1|eiqc ·rc |n2〉0 is the form factor. The interaction Hamiltonian HI reads

Hee =
∑

Qkk′,n1n2n3n4

V (Q)In1n2(qc)In3n4(qc)c
Ď

k′+qn3
cĎk−qn1ckn2ck′n4 , (152)

Hep =
∑

Qk,n1n2,λ
Mλ(Q)In1n2(qc)c

Ď
k+qn1ck,n2(aQλ + a

Ď
−Qλ), (153)

Hei =
∑

Qk,n1n2

Vi(Q )In1n2(qc)ρi(Q )c
Ď
k+qn1ckn2 , (154)

for electron–electron, electron–phonon and electron–impurity interactions, respectively.
By solving the non-equilibrium Green function with the generalized Kadanoff–Baym Ansatz and the gradient

expansion [833], the kinetic spin Bloch equations read

∂ρk(r, t)
∂t

=
∂

∂t
ρk(r, t)

∣∣∣∣
dr
+

∂

∂t
ρk(r, t)

∣∣∣∣
dif
+

∂

∂t
ρk(r, t)

∣∣∣∣
coh
+

∂

∂t
ρk(r, t)

∣∣∣∣
scat
. (155)

The first term on the right hand side of the above equation is

∂

∂t
ρk(r, t)

∣∣∣∣
dr
=
1
2
{∇rε̄k(r, t),∇kρk(r, t)} (156)

with {A, B} = AB + BA representing the anti-commutator. (ε̄k(r, t))n1n2 = E
n1n2
k + eE · rδn1n2 + Σ

n1n2
HF (k, r, t), in which

Σ
n1n2
HF (k, r, t) = −

∑
Q I(qc)ρk−q(r, t)V (Q )I(−qc) is the Hartree–Fock term. The second term describes the diffusion

∂

∂t
ρk(r, t)

∣∣∣∣
dif
= −

1
2
{∇kε̄k(r, t),∇rρk(r, t)}. (157)

The coherent term is given by

∂

∂t
ρk(r, t)

∣∣∣∣
coh
= −i[ε̄k(r, t), ρk(r, t)], (158)



M.W. Wu et al. / Physics Reports 493 (2010) 61–236 135

where [A, B] = AB− BA is the commutator. The scattering term in Eq. (155) reads

∂

∂t
ρk(r, t)

∣∣∣∣
scat
= −{Sk(>,<)− Sk(<,>)+ Sk(>,<)Ď − Sk(<,>)Ď}, (159)

with

Sk(>,<) =
∑
Q
Ni

∫ t

−∞

dτVi(Q )I(qc)e
−iEk−q(t−τ)ρ>k−q(τ )Vi(−Q)I(−qc)ρ

<
k (τ )e

iEk(t−τ)

+

∑
Q

∫ t

−∞

dτMλ(Q )I(qc)e
−iEk−q(t−τ)ρ>k−q(τ )Mλ(−Q)I(−qc)ρ

<
k (τ )e

iEk(t−τ)[N<(Q)eiωQ(t−τ) + N>(Q )e−iωQ(t−τ)]

+

∑
Qk′q′c

∫ t

−∞

dτV (Q )I(qc)e
−iEk−q(t−τ)ρ>k−q(τ )V (−q

′

c)I(−q
′

c)ρ
<
k (τ )e

iEk(t−τ)Tr[I(−qc)e
−iEk(t−τ)ρ>k′ (τ )

× I(q′c)ρ
<
k′−q(τ )e

−iEk′−q(t−τ)]. (160)

Here N<(Q ) = N(Q ) is the phonon distribution, N>(Q) = N(Q )+1, ρ>k = 1−ρk, and ρ
<
k = ρk. Ni is the impurity density.

As Ek =
∑
n εn(k)Tk,n with Tk,n = |k, n〉〈k, n|, e

iEkt =
∑
n e
iεn(k)tTk,n. By further assuming the spin precession period is

much longer than the average momentum scattering time and applying the Markovian approximation, i.e., replacing ρk(τ )
in the integrand of Eq. (160) by

ρk(τ ) ≈ eiEk(t−τ)ρk(t)e−iEk(t−τ), (161)

the time integral can be carried out and one arrives at the energy conservation:

Sk(>,<) = π
∑

Q,n1n2

NiVi(Q )I(qc)ρ
>
k−q(t)Tk−q,n1Vi(−Q )I(−qc)Tk,n2ρ

<
k (t)δ(εn1(k − q)− εn2(k))

+π
∑

Q,n1n2

Mλ(Q )I(qc)ρ
>
k−q(t)Tk−q,n1Mλ(−Q)I(−qc)Tk,n2ρ

<
k (t)

×[N<(Q )δ(εn1(k− q)− εn2(k)− ωQ )+ N>(Q )δ(εn1(k− q)− εn2(k)+ ωQ )]

+π
∑

Qk′q′c ,n1n2n3n4

V (Q )I(qc)ρ
>
k−q(t)Tk−q,n1V (−Q )I(−q

′

c)Tk,n2ρ
<
k (t)

× Tr[I(−qc)ρ
>
k′ (t)Tk′,n3 I(q

′

c)Tk′−q,n4ρ
<
k′−q(t)]δ(εn1(k− q)− εn2(k)+ εn3(k

′)− εn4(k
′
− q)). (162)

The expression of Sk(<,>) can be obtained by interchanging< and> in Eqs. (161) and (162).

5.4. Spin relaxation and dephasing in n- or p-type quantum wells

In this section, we review the spin dynamics in n- or p-type quantum wells under various conditions. We first write the
kinetic spin Bloch equations in both the helix and collinear spin spaces in quantumwells in Section 5.4.1. Thenwe review the
spin dynamics near the equilibrium and far away from the equilibrium in Sections 5.4.2 and 5.4.3 respectively. We highlight
the effect of the Coulomb scattering on the spin relaxation and dephasing in Section 5.4.4. After that we review the non-
Markovian effect of hole spin dynamics in Section 5.4.5.We review the electron spin relaxation due to the Bir–Aronov–Pikus
mechanism in Section 5.4.6. The spin dynamics in the presence of a strong THz laser field is reviewed in Section 5.4.7. Spin
relaxation in paramagnetic GaMnAs quantum wells,75 GaAs (110) quantum wells, Si/SiGe and Ge/SiGe quantum wells and
wurtzite ZnO (001) quantum wells are reviewed in Sections 5.4.8–5.4.11, respectively.

5.4.1. Kinetic spin Bloch equations in (001) quantum wells
We first consider a quantum well with a small well width so that only the lowest subband is needed. The electron

Hamiltonian of Eq. (147) now reads

He =
k2

2m∗
+ h(k) · σ + ε0. (163)

Here ε0 is the energy of the lowest subband. It can be calculated from the Schrödinger equation with confinement potential
V (rc) = V (z). h(k) = 1

2gµB[B + Ω
2D(k)] with �2D(k) being the Dresselhaus and/or Rashba terms. The eigenenergy and

75 Recently Shen et al. have further extended the kinetic spin Bloch equation theory to study the Gilbert damping in ferromagnetic semiconductors [842].
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eigenfunction of Eq. (163) are εξ (k) = k2
2m∗ + ξ |h(k)| + ε0 and |k, ξ = ±〉 =

Tk,ξ |↑〉
〈↑|Tk,ξ |↑〉

, respectively. The projector operator

reads Tk,ξ = 1
2 [1 + ξ

h(k)
|h(k)| · σ]. The space spanned by {|k, ξ〉} is the helix space. As |k, ξ〉 is k-dependent, the kinetic spin

Bloch equations aremore complicated in this space.Meanwhile, onemay use the space spanned by {|k〉|n〉0}. Herewe choose
k0 = 0, i.e., the Γ -point, and then |n〉0 is the eigenvector of σz , |σ 〉 = | ↑〉 or | ↓〉, which is k-independent. This space is the
collinear space. In the collinear spin space, the density matrix is

ρk =

(
fk↑ ρk↑↓
ρk↓↑ fk↓

)
. (164)

When an electric field E is applied along the quantum well, the kinetic spin Bloch equations are given by [28,569]
∂ρk(t)
∂t
= eE · ∇kρk(t)− i[h(k) · σ +ΣHF(k, t), ρk(t)] +

ρk(t)
∂t

∣∣∣∣
scat
. (165)

HereΣHF(k, t) = −
∑

q Vqρk−q(t), and Sk(>,<) in the scattering terms (Eq. (162)) reads

Sk(>,<) = πNi
∑

q,η1η2

|Uq|2ρ>k−q(t)Tk−q,η1Tk,η2ρ
<
k (t)δ(εη1(k− q)− εη2(k))

+π
∑

Q,η1η2

|gQ,λ|2ρ>k−q(t)Tk−q,η1Tk,η2ρ
<
k (t)[N

<(Q)δ(εη1(k− q)− εη2(k)− ωQ )

+N>(Q )δ(εη1(k− q)− εη2(k)+ ωQ )]

+π
∑

qk′,η1η2η3η4

V 2qρ
>
k−q(t)Tk−q,η1Tk,η2ρ

<
k (t)Tr[ρ

>
k′ (t)Tk′,η3Tk′−q,η4ρ

<
k′−q(t)]

× δ(εη1(k− q)− εη2(k)+ εη3(k
′)− εη4(k

′
− q)), (166)

with |Uq|2 =
∑
qz Vi(Q )Vi(−Q)I(qz)I(−qz) and |gQ,λ|

2
= Mλ(Q )I(qz)Mλ(−Q)I(−qz) and Vq =

∑
qz V (Q )I(qz)I(−qz)

being the matrix elements with the form factors. It is noted that Iσ1σ2(qz) is diagonal in the collinear spin space |σ 〉. In the
calculation, one either uses the static screening or the screening under the random-phase approximation [372] for Vq and
Uq [843], according to the different conditions of investigation. In the collinear spin space, the screened Coulomb potential
and electron–impurity interaction potential in the random-phase approximation read

Vq =
∑
qz

vQ|I(iqz)|2/ε(q), (167)

|Uq|2 =
∑
qz

u2Q|I(iqz)|
2/ε(q)2, (168)

where vQ = 4πe2

Q2
is the bare Coulomb potential, u2Q = Z

2
i v
2
Q with Zi the charge number of impurity, and

ε(q) = 1−
∑
qz

vQ|I(iqz)|2
∑
kσ

fk+qσ − fkσ
εk+q − εk

. (169)

Eq. (165) is valid in both the collinear and helix spin spaces. By performing a unitary transformation ρhk = U
Ď
kρ
c
kUk, one may

transfer the density matrix from the collinear space ρck to the helix one ρ
h
k , with

Uk =
(
〈↑ |k,+〉 〈↑ |k,−〉
〈↓ |k,+〉 〈↓ |k,−〉

)
. (170)

Finally, we point out that the energy spectrum εη(k) in the scattering Eq. (166) contains the spin–orbit coupling. When the
coupling is much smaller than the Fermi energy, one may neglect the coupling and hence

δ(εη(q)− εη′(k)) ≈ δ(ε(q)− ε(k)). (171)
By further utilizing the relation∑

η

Tk,η = 1, (172)

the scattering becomes

Sk(>,<) = πNi
∑
q
|Uq|2ρ>k−q(t)ρ

<
k (t)δ(ε(k− q)− ε(k))

+π
∑
Q
|gQ,λ|2ρ>k−q(t)ρ

<
k (t)[N

<(Q)δ(ε(k− q)− ε(k)− ωQ )+ N>(Q )δ(ε(k− q)− ε(k)+ ωQ )]

+π
∑
qk′
V 2qρ

>
k−q(t)ρ

<
k (t)Tr[ρ

>
k′ (t)ρ

<
k′−q(t)]δ(ε(k− q)− ε(k)+ ε(k′)− ε(k′ − q)).
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This is the form used in the electron systems [25,27–29,32,41,42,44,69,111,199,336,372,569,570,609,835,844–846].
Before discussing the results from the full kinetic spin Bloch equations, we first show a simplest case by keeping

only the electron–impurity scattering in the scattering term, where one can obtain an analytical solution in the spatially
homogeneous system by further neglecting the Coulomb Hartree–Fock contribution [363]. The kinetic spin Bloch equations
then read

∂

∂t
ρk(t) = −i[α(kyσx − kxσy), ρk(t)] − 2πNi

∑
q
|Uq|2δ(εk−q − εk)[ρk(t)− ρk−q(t)]. (173)

By expanding ρk as ρk =
∑
l ρl(k)e

iθk l, one has

∂

∂t
ρl(k, t) = αk

{
[S+, ρl+1(k, t)] − [S−, ρl−1(k, t)]

}
− |Ul(k)|2ρl(k, t), (174)

in which |Ul(k)|2 =
m∗Ni
2π h̄2

∫ 2π
0 dθ |U(

√
2k2(1− cos θ))|2(1− cos lθ) with |U0(k)|2 = 0 and |U−1(k)|2 = |U1(k)|2 ≡ 1

τp(k)
. By

multiplying 12σ and then performing trace from both sides of Eq. (174), one comes to

∂

∂t
Sl(k, t) = αk[F ĎSl+1(k, t)− F Sl−1(k, t)] − |Ul(k)|2Sl(k, t), (175)

with Sl(k, t) = 1
2Tr[ρl(k, t)σ] and F =

(
0 0 1
0 0 −i
−1 i 0

)
. In deriving Eq. (175), we have used the relation 12Tr([S

+, ρl]σ) =

F ĎSl(k, t) and 12Tr([S
−, ρl]σ) = F Sl(k, t). By keeping only the lowest three orders of Sl in the strong scattering limit

(xk � 1), i.e., l = 0,±1, one has ∂∂t − αk

−

1
αkτp(k)

−F 0

F Ď 0 −F

0 F Ď
−

1
αkτp(k)



( S1

S0
S−1

)
= 0. (176)

The solution of Eq. (176) reads

S1(k, t) = −
xk

2
√
1− x2x

e
−

t
2τp(k) sinh

t

2τp(k)/
√
1− x2k

(1
i
0

)
f (εk − µ), (177)

S0(k, t) = e
−

t
2τp(k)

 sinh
t

2τp(k)/
√
1−x2k√

1− x2k
+ cosh

t

2τp(k)/
√
1− x2k

(00
1

)
f (εk − µ), (178)

S−1(k, t) = −
xk

2
√
1− x2x

e
−

t
2τp(k) sinh

t

2τp(k)/
√
1− x2k

( 1
−i
0

)
f (εk − µ), (179)

with the initial conditions being S1(k, 0) = S−1(k, 0) = 0 and S0(k, 0) = f (εk−µ)ez , i.e., the initial spin polarization being
along the z-axis. xk in Eqs. (177)–(179) is xk = 4αkτp(k). From Eqs. (177)–(179), electron spin at momentum k reads

Sk(t) = S0(k, t)+ S1(k, t)eiθk + S−1(k, t)e−iθk , (180)

and hence the component along the z-axis is given by

Szk(t) = S
z
0(k, t) =

1
2
f (εk − µ)

[(
1+ 1/

√
1− x2k

)
e
−

t
2τp(k)

(1−
√
1−x2k ) +

(
1− 1/

√
1− x2k

)
e
−

t
2τp(k)

(1+
√
1−x2k )

]
. (181)

From Eq. (181), one can see the different time evolutions of the spin polarization at different regimes. When xk > 1, i.e.,

αkτp(k) > 1/4, the system is in the weak scattering regime and the terms e
±

t
2τp(k)

√
1−x2k give just the spin oscillations. Hence

the spin relaxation is given by

1/τs(k) = 1/[2τp(k)]. (182)
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a b c

Fig. 48. Spin relaxation time τ vs. the temperature T in a GaAs (001) quantum well with well width a = 7.5 nm and electron density n being (a)
4 × 1010 cm−2 , (b) 1 × 1011 cm−2 , and (c) 2 × 1011 cm−2 , respectively. Solid curves with triangles: impurity density ni = n; solid curves with dots:
ni = 0.1n; solid curves with circles: ni = 0; dashed curves with dots: ni = 0.1n and no Coulomb scattering. From Zhou et al. [372].

However, the spin oscillation frequency is ωk =
√
(2αk)2 − 1/[2τp(k)]2. One can see from ωk that the scattering tends to

suppress the spin oscillation frequency. This indicates the counter-effect of the scattering to the inhomogeneous broadening.
When xk < 1, the spin polarization decays according to

1/τs,±(k) =
(
1±

√
1− [4αkτp(k)]2

)
/[2τp(k)]. (183)

In the strong scattering limit, i.e., xk � 1,

1/τs,+(k) = 1/τp(k), (184)

1/τs,−(k) = (2αk)2τp(k). (185)

As xk � 1, τs,−(k) � τs,+(k) and the spin relaxation is determined by τs,−(k). It is noted that τs,−(k) is exactly the result
in the literature [3,101].
Finally, one can see from Eqs. (183) and (185) that in the weak scattering regime, a stronger scattering leads to a faster

spin relaxation. Nevertheless, in the strong scattering regime, a stronger scattering leads to a weaker spin relaxation. This
can be understood as follows. In the presence of inhomogeneous broadening, the scattering has dual effects on the spin
relaxation: (i) It gives a spin relaxation channel; (ii) It has a counter-effect to the inhomogeneous broadening by making
the system more homogeneous. In the weak scattering limit, the counter effect is weak and hence adding a new scattering
always leads to an additional relaxation channel and hence a fast spin relaxation. In the strong scattering limit, the counter
effect becomes significant and hence adding a new scattering always leads to a longer spin relaxation time.

5.4.2. Spin relaxation and dephasing in n-type (001) GaAs quantum wells near the equilibrium
By numerically solving the kinetic spin Bloch equations with all the relevant scatterings included, Weng andWu studied

the spin dephasing in n-type GaAs quantum wells at high temperature (≥120 K), where the electron-acoustic phonon
scattering is unimportant, first for small well width [44] with only the lowest subband and then for large well width [844]
with multisubband effects considered. They further investigated the hot-electron effect in spin dephasing by applying a
large in-plane electric field [569], where the hot-electron effect is investigated. By further increasing the in-plane electric
field, electrons can populate higher subbands and/or higher valleys. These effects were investigated byWeng andWu [844]
for the multisubband case and Zhang et al. [845] for the multivalley case. The spin relaxation at low temperature was
first investigated by Zhou et al. [372] from a kinetic spin Bloch equation approach by including the electron-acoustic
phonon scattering. Jiang and Wu studied the effect of strain on spin relaxation [570]. Spin relaxation for a system with
competing Dresselhaus and Rashba terms was investigated theoretically by Cheng and Wu [597] and both experimentally
and theoretically by Stich et al. [199]. Spin relaxation with large initial spin polarization was first studied by Weng and
Wu [44] and many predictions were verified experimentally with good agreement between the experimental data and
theoretical calculations by Stich et al. [41,42]. The density dependence of the spin relaxation was also investigated both
theoretically and experimentally [609]. In this and the next sections we review the main results of the above investigations.
It was revealed that the spin relaxation time based on the D’yakonov–Perel’ mechanism has a rich temperature

dependence depending on different impurity densities, carrier densities and well widths.
Fig. 48 shows the temperature dependence of the spin relaxation time of a 7.5 nm GaAs/Al0.4Ga0.6As quantum well

at different electron and impurity densities [372]. For this small well width, only the lowest subband is needed in the
calculation. It is shown in the figure that when the electron–impurity scattering is dominant, the spin relaxation time
decreasesmonotonically with increasing temperature. This is in good agreementwith the experimental finding, as shown in
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a b

Fig. 49. (a) Spin relaxation time τ vs. temperature T in a GaAs (001) quantum well with well width a = 7.5 nm and electron density n = 4× 1010 cm−2
at three different spin-splitting parameters. Dots: experimental data; dot–dashed curve: γ = 0.9γ0; solid curve: γ = γ0; dashed curve: γ = 1.1γ0 .
γ0 = 0.0114 eV ·nm3 . (b) Hall mobilityµHall vs. temperature T (Ref. [602]), fromwhich the temperature dependence of the impurity density is determined.
From Zhou et al. [372].

Fig. 49, where the dots are experimental data fromOhno et al. [602], and the theoretical calculation based on the kinetic spin
Bloch equations reproduces well the experimental results from 20 to 300 K [372]. However, it is shown that for a sample
with high mobility, i.e., low impurity density, when the electron density is low enough, there is a peak at low temperature.
This peak, located around the Fermi temperature of the electrons T eF = EF/kB, is identified to be solely due to the Coulomb
scattering [372,847]. It disappears when the Coulomb scattering is switched off, as shown by the dashed curves in the figure.
This peak also disappears at high impurity densities. It is also noted in Fig. 48(c) that for electrons of high density such that
T eF is high enough and the contribution from the electron–longitudinal optical-phonon scattering becomesmarked, the peak
disappears even for samples with no impurity and the spin relaxation time increases with temperature monotonically. The
physics leading to the peak is due to the crossover of the Coulomb scattering from the degenerate to the non-degenerate
limit. At T < T eF , electrons are in the degenerate limit and the electron–electron scattering rate 1/τee ∝ T

2. At T > T eF ,
1/τee ∝ T−1 [843,848]. Therefore, at low electron density such that T eF is low enough and the electron-acoustic phonon
scattering is very weak compared to the electron–electron Coulomb scattering, the Coulomb scattering is the dominant
scattering for a high mobility sample. Hence the different temperature dependence of the Coulomb scattering leads to the
peak. It is noted that the peak is just a feature of the crossover from the degenerate to the non-degenerate limit. The location
of the peak also depends on the strength of the inhomogeneous broadening.When the inhomogeneous broadening depends
on momentum linearly, a peak tends to appear at the Fermi temperature. A similar peak was predicted in the electron spin
relaxation in a p-type GaAs quantum well and the hole spin relaxation in a (001) strained asymmetric Si/SiGe quantum
well, where the electron and hole spin relaxation times both show a peak at the hole Fermi temperature T hF [112,299].
When the inhomogeneous broadening depends on momentum cubically, the peak tends to shift to a lower temperature.
It was predicted that a peak in the temperature dependence of the electron spin relaxation time appears at a temperature
in the range of (T eF /4, T

e
F /2) in the intrinsic bulk GaAs [110] and a peak in the temperature dependence of the hole spin

relaxation time at T hF /2 in a p-type Ge/SiGe quantum well [299]. Ruan et al. demonstrated the peak experimentally in a
high-mobility low-density GaAs/Al0.35Ga0.65As heterostructure [604], as shown in Fig. 50, where a peak appears at T eF /2 in
the spin relaxation time versus temperature curve.
It is also seen from Fig. 48 that at high temperature (>100 K), except for the case where the electron–impurity scattering

dominates the scattering, the spin relaxation time increases with increasing temperature. Weng and Wu also showed this
in a 15 nm quantum well with a magnetic field B = 4 T in the Voigt configuration [44]. They even compared the spin
relaxation times obtained from the kinetic spin Bloch equation approach and from the single-particle model [196,577]
1/τ =

∫
∞

0 dEk(fk 12 − fk− 12 )Γ (k)/
∫
∞

0 dEk(fk 12 − fk− 12 ), in which Γ (k) is the spin relaxation rate. It is seen from the inset
of Fig. 51 that the spin relaxation time based on the previous single-particle model decreases rather than increases with
increasing temperature. As the impurity density is set to zero in both computations, the main difference comes from the
Coulomb scattering which is missing in the single particle calculation.
However, even for sample without any impurity, the temperature dependence of the spin relaxation time can also

decrease with increasing temperature at high temperatures. This was shown by Weng and Wu in a GaAs (001) quantum
well withwider well width [844]. In the calculation, they considered twowell widths, i.e., 17.8 nm and 12.7 nm, and showed
the spin relaxation times as a function of temperature with both the lowest subband and multisubband effects considered.
One can see from the dashed curves (only the lowest subband is calculated) in Fig. 52 that for small well width, the spin
relaxation time increases with increasing temperature, but for larger well width, the spin relaxation time first increases
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Fig. 50. (a) Measured electron g-factor as a function of temperature for a two-dimensional electron gas (squares) in a GaAs/Al0.35Ga0.65As heterostructure
and in bulk GaAs (circles). (b) Measured electron spin relaxation/dephasing time as a function of temperature for a two-dimensional electron gas (squares)
and bulk GaAs (circles). All the data were taken at B = 0.5 T and powers of pump : probe = 200 : 20 µW. From Ruan et al. [604].

Fig. 51. Spin dephasing time τ vs. temperature T with spin polarization P = 2.5% (a) and P = 75% (b) under two different impurity levels in a GaAs
(001) quantum well. Curves with dots: Ni = 0; curves with squares: Ni = 0.1Ne . The spin dephasing times predicted by the simplified treatment of
D’yakonov–Perel’ term (solid curve) and the kinetic spin Bloch equation approach (dots) for Ni = 0 are plotted in the inset for comparison. From Weng
and Wu [44].

and then decreases with temperature. It is also noted that when the multisubband effect is included (solid curves), similar
results are also obtained.
The physics leading to the above rich behaviors originates from the competition between the inhomogeneous broadening

and the scattering. With the increase of temperature, electrons are distributed to higher momentum states. This leads to a
larger inhomogeneous broadening from the D’yakonov–Perel’ term and hence a shorter spin relaxation time. In the same
time, a higher temperature also causes stronger scattering (especially the electron–phonon scattering). The scattering tends
tomake electrons distributemore homogeneously and suppresses the inhomogeneous broadening. Therefore the scattering
tends to cause a longer spin relaxation time with the increase of temperature. When the electron–impurity scattering
dominates the whole scattering, the spin relaxation time decreases monotonically with increasing temperature, thanks to
the increase of the inhomogeneous broadening together with the weak temperature dependence of the electron–impurity
scattering. For samples with highmobility, at low temperature, where the scattering is determined by the electron–electron
Coulomb scattering, a peak appears due to the crossover from the degenerate to non-degenerate limits. At high temperature,
where electrons are in non-degenerate limit, the scattering is determined by the electron–electron and electron–phonon
scatterings. The calculations show that for small well width when only the linear Dresselhaus term is dominant, the
temperature dependence of the scattering is stronger and the spin relaxation time increases with temperature. However,
for wide quantum well, at a certain temperature the cubic Dresselhaus term becomes dominant. The fast increase of the
inhomogeneous broadening from the cubic term overcomes the effect from the scattering and the spin relaxation time
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Fig. 52. Spin dephasing time τs vs. the background temperature T for two GaAs (001) quantum wells with width a = 17.8 nm (•) and 12.7 nm (�). The
solid curves are the spin dephasing time calculatedwith the lowest two subbands included and the dashed curves are those calculatedwith only the lowest
subband. FromWeng and Wu [844].

40

10

sp
 (

ps
)

τ

0 10
T (K)

20

Fig. 53. Measured temperature dependence of the spin relaxation time for two-dimensional n-InAsGa channels with a width of 1.5 µm, where the cubic
in k terms of the Dresselhaus term dominate the spin relaxation. Open and filled squares represent data of channels along [100] and [110], while the open
circles depict the spin relaxation time of the unstructured quantum well. From Holleitner et al. [655].

decreases with temperature. Jiang and Wu further introduced strain to change the relative importance of the linear and
cubic D’yakonov–Perel’ terms and showed the different temperature dependences of the spin relaxation time [570]. This
prediction has been realized experimentally by Holleitner et al. in Ref. [655], where they showed that in n-type two-
dimensional InGaAs channels, when the linear D’yakonov–Perel’ term is suppressed, the spin relaxation time decreaseswith
temperature monotonically, as shown in Fig. 53. It is noted for the unstructured quantum well in Fig. 53, where the linear
term is important, that the spin relaxation time increases with temperature. Similar findings were reported by Malinowski
et al. [603], who measured the spin relaxation in intrinsic GaAs/AlxGa1−xAs quantum wells with different well widths,
for temperature higher than 80 K, as shown in Fig. 54(a). One clearly sees an increase of the spin relaxation time with
increasing temperature for small well width and a decrease of the spin relaxation time for large well width. Fig. 54(b) shows
the theoretical calculation based on the kinetic spin Bloch equations for three small well widths, where the lowest subband
approximation is valid for the small well widths (6 and 10 nm) and barely valid for the 15 nm well width. All the relevant
scatterings, such as the electron–electron, electron–hole, electron–phonon and electron–impurity scatterings are included
in the computation. The peaks in the cases of 10 and 15 nm well widths originate from the competition of the linear and
cubic D’yakonov–Perel’ terms addressed above.
A similar situation also occurs in the density dependence of the spin relaxation time. A peak in the density dependence

of the spin relaxation time was predicted theoretically and realized experimentally [609], as shown in Fig. 55, where the
spin relaxation time is plotted against the photoexcited carrier density in a GaAs quantum well at room temperature.
This peak can be easily understood from the relation τs ∝ [〈Ω2(k)〉τ ∗p ]

−1, where τ ∗p should include the effect from the
Coulomb scattering [334,591,615]. When the system is in the non-degenerate limit, the average of 〈Ω2(k)〉 is performed at
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Fig. 54. Electron spin relaxation in intrinsic GaAs/Al0.35Ga0.65As quantumwells of a variety ofwidths. (a) Experimental results fromMalinowski et al. [603].
The solid line represents a quadratic dependence of relaxation rate on temperature. The dashed curve is data on electron spin relaxation in bulk GaAs from
Maruschak et al. (as reproduced byMeier and Zakharchenya [3]). FromMalinowski et al. [603]. (b) Theoretical calculation via the kinetic spin Bloch equation
approach (curves). The dots are data from (a). The parameters are Ne = Nh = 4× 1011 cm−2 , Ni = 0.1 Ne , γD = 0.0162 eV · nm3 . Here Ne and Nh are the
electron and hole densities respectively, Ni is the impurity density, and γD is the spin–orbit splitting parameter.

Fig. 55. Carrier density dependence of electron spin relaxation time τ at room temperature. Dots: experimental data in a GaAs (001) quantum well
(2D) with a width of 10 nm; open squares: experimental data in bulk material (3D). Solid curve: full theoretical calculation; chain curve: theoretical
calculation without the spin–flip electron–hole scattering (SFEHS); dashed curve: theoretical calculation without the spin-conserving electron–hole
scattering (SCEHS); dotted curve: theoretical calculation without the Coulomb Hartree–Fock term. Note that the scale of the bulk data is on the top frame
of the figure. From Teng et al. [609].

the Boltzmann distribution and is therefore independent of the carrier density. Consequently τs increases with increasing
carrier density, as τ ∗p decreases with the density. However, when the carrier density is high enough and the average should
be performed using the Fermi distribution, 〈Ω2(k)〉 becomes density dependent. Especially in the strong degenerate limit,
〈k〉 ∼ kF ∝

√
N and 〈Ω2(k)〉 becomes strongly density dependent. Moreover, the carrier–carrier Coulomb scattering

decreases with increasing density in the strong degenerate limit. As a result, the spin relaxation time decreases with
increasing carrier density. The peak position depends on the competition between the inhomogeneous broadening and
the scattering. Also the linear and cubic D’yakonov–Perel’ terms influence the peak position.
By including the intersubband scattering, especially the intersubband Coulomb scattering, Weng and Wu studied the

multisubband effect in spin relaxation [844]. It was discovered that although the higher subband has a much larger
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Fig. 56. (a), (b) and (c) Measured spin coherence times for the 1st and 2nd subbands of a single-barrier GaAs/AlAs heterostructure, as the wavelength
varies for three different conditions: −0.3 V, 0 T; −0.3 V, 2 T and −0.6 V, 2 T. The points are experimental results, and the curves are best fittings to the
points. (d) and (e) Effective g∗ factors for the 1st and 2nd subbands plotted as a function of wavelength. From Zhang et al. [625].

inhomogeneous broadening, the spin relaxation times of two subbands are identical thanks to the strong intersubband
Coulomb scattering [844]. This prediction was later verified experimentally by Zhang et al. [625], who studied the spin
dynamics in a single-barrier heterostructure by time-resolved Kerr rotation. By applying a gate voltage, they effectively
manipulated the confinement of the second subband and the measured spin relaxation times of the first and second
subbands are almost identical at large gate voltage, as shown in Fig. 56(c). The large deviations at small gate voltages are
because the wavefunctions of the second subband are extended due to the weak confinement and hence the intersubband
Coulomb scattering becomes weaker.
Finallywe address spin relaxation in systemswith both the Dresselhaus and Rashba spin–orbit couplings. It has been first

pointed out by Averkiev and Golub [194] that for a (001) quantum well with identical Dresselhaus and Rashba spin–orbit
coupling strengths, when the cubic Dresselhaus term is ignored, the effective magnetic field becomes fixed and is aligned
along the (110) or (1̄10) direction depending on the sign of the Rashba field. Therefore one obtains an infinite spin lifetime
if the spin polarization is parallel to the effective magnetic field direction. In reality, due to the presence of the cubic
Dresselhaus term and/or the difference between the Dresselhaus and Rashba spin–orbit coupling strengths, the spin life
time along the (110) or (1̄10) direction is still finite. But there is strong anisotropy of the spin lifetime along different spin
polarizations. Cheng andWu studied this anisotropy under identical linear Dresselhaus and Rashba coupling strengths, but
with the cubic Dresselhaus term included [597]. Stich et al. applied amagnetic field parallel to the (110) and (1̄10) directions
and obtained a large magnetoanisotropy of electron spin dephasing in a high mobility (001) GaAs quantum well [199]. The
initial spin polarization was obtained by optical pumping and is therefore along the growth direction of the quantum well.
The experimental setup is illustrated in Fig. 57(a). Due to the mixing of the different anisotropic spin orientations by the
magnetic field, they observed different magnetic field dependences of the spin dephasing time along the (110) and (1̄10)
directions, as shown in Fig. 57(d). The maximum and minimum are determined by the relative strengths of the Dresselhaus
and Rashba terms. It is also seen that calculation based on the fully microscopic kinetic spin Bloch equations can reproduce
the experimental findings well.

5.4.3. Spin relaxation and dephasing in n-type (001) GaAs quantum wells far away from the equilibrium
Due to the full account of the Coulomb scattering, the kinetic spin Bloch equation approach can be applied to study the

spin system far away from the equilibrium. By so called far away from the equilibrium, one refers to the spin dynamics with
large spin polarization and/or with a large in-plane electric field where the hot-electron effect becomes significant.
Weng andWu first studied the spin relaxation with large initial spin polarization [44] and discovered a marked increase

of the spin relaxation/dephasing time with increasing spin polarization, as shown in Fig. 58(a). It is noted that the plotted
spin dephasing time is the inverse of the spin dephasing rate. Therefore one expects amarkedly increased total spin lifetime.



144 M.W. Wu et al. / Physics Reports 493 (2010) 61–236

240

220

200

180

160

140

120

100

80

0.0 0.2 0.4
Magnetic field B (T)

Sp
in

 d
ep

ha
si

ng
 ti

m
e 

(p
s)

0.6 0.8 1.0

a

c

b d

Fig. 57. (a) Schematic of the time-resolved Faraday rotation experiment. In-plane magnetic fields are applied either in the [110] or [11̄0] directions. (b)
Sketch of the precession of optically oriented spins about a [11̄0] in-plane magnetic field. (c) Sketch of the precession of optically oriented spins about a
[110] in-plane magnetic field. (d) Comparison of the experimental (solid symbols) and theoretically calculated (open symbols) spin dephasing times for
different in-plane magnetic-field directions in GaAs (001) quantum well. α and β are the Rashba and Dresselhaus spin–orbit coefficients, respectively.
From Stich et al. [199].

a b

Fig. 58. (a) Spin dephasing time τ vs. the initial spin polarization P of electrons in a GaAs (001) quantum well at different temperatures. The impurity
density Ni = 0. (b) Spin dephasing time τ vs. the initial spin polarization P at T = 120 K for different impurity levels. Dots (•): Ni = 0; Diamonds (�):
Ni = 0.01Ne; Squares (�): Ni = 0.1Ne . The curves are plotted as a guide to the eyes. FromWeng and Wu [44].

This enhancement is more pronounced in samples with larger mobility, as shown in Fig. 58(b). The physics leading to such
an increase was identified from the Coulomb Hartree–Fock term. In the presence of the spin polarization, the Coulomb
Hartree–Fock term provides an effective magnetic field along the z-axis:

BHFz =
1
gµB

∑
q
Vq(fk+q 12 − fk+q− 12 ). (186)

This effective magnetic field can be as large as 20 T and effectively blocks the spin precession as the energies of the spin-up
and -down electrons are no longer detuned. It can be seen clearly from Fig. 59 that by removing the longitudinal component
of the Hartree–Fock term, the polarization dependence of the spin relaxation time becomes pretty mild. It is noted that
unlike a real magnetic field which breaks the time-reversal symmetry, the Coulomb interaction does not. This can be seen
from the fact that the Hartree–Fock terms cancel each other after performing the summation over all the k states (Eq. (143)).
Therefore the spin relaxation timewith a large effectivemagnetic field is still finite. As the effectivemagnetic field decreases
with temperature, Weng andWu pointed out that the spin relaxation time should decrease with increasing temperature at
large spin polarization, in contrast to the case with small spin polarization [as shown in Fig. 51(b)].
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Fig. 59. Spin dephasing time τ vs. the initial spin polarization P for T = 120 K and Ni = 0 in a GaAs (001) quantum well. Dots (•): With the longitudinal
component of the Hartree–Fock term included; Diamonds (�): Without the longitudinal component of the Hartree–Fock term. The curves are plotted as a
guide to the eyes. FromWeng and Wu [44].
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Fig. 60. (a) Normalized time-resolved Faraday rotation traces for different degrees of initial electron spin polarization, P in a GaAs (001) quantum well.
The total densities of electrons, ntot = ne + ntotph , are 2.19, 2.66, 3.83, 8.39 (in units of 10

11cm−2) for P = 1.6%, 8%, 18%, 30%, respectively. (b) Calculated
spin decay curves for the experimental parameters, such as initial spin polarization, total electron density, electron mobility, and temperature T = 4.5 K
(solid lines). In the calculation, a phenomenological decay time is incorporated as a single fitting parameter τ (see text). The dashed curve for P = 30% is
calculated for a hot electron temperature of Te = 120 K. (c) Same as (b) but calculated without the Hartree–Fock term. In particular for large P the decay is
much faster than in the experiments [cf. (a)]. The inset shows the data, displayed in (b), in a semilogarithmic plot. At low P the zero-field oscillations are
superimposed. From Stich et al. [41].

These predictions have been realized experimentally by Stich et al. [41,42] and Zhang et al. [327]. By changing the
intensity of the circularly polarized lasers, Stich et al. measured the spin dephasing time in a high mobility n-type GaAs
quantum well as a function of initial spin polarization, as shown in Fig. 60(a). Indeed they observed an increase of the
spin dephasing time with the increased spin polarization, and the theoretical calculation based on the kinetic spin Bloch
equations nicely reproduced the experimental findings when the Hartree–Fock term was included (Fig. 60(b)). It was also
shown that when the Hartree–Fock term is removed, one does not see any increase of the spin dephasing time (Fig. 60(c)).
Later, they further improved the experiment by replacing the circular-polarized laser pumping with elliptically polarized
laser pumping. By doing so, they were able to vary the spin polarization without changing the carrier density. Fig. 61 shows
themeasured spin dephasing times as function of initial spin polarizationunder two fixedpumping intensities, togetherwith
the theoretical calculationswith andwithout the CoulombHartree–Fock term. Again the spin dephasing time increaseswith
the initial spin polarization as predicted and the theoretical calculations with the Hartree–Fock term are in good agreement
with the experimental data. Moreover, Stich et al. also confirmed the prediction of the temperature dependences of the
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Fig. 61. GaAs (001) quantum well: (a) The spin dephasing times as a function of initial spin polarization for constant, low excitation density and variable
polarization degree of the pump beam. The measured spin dephasing times are compared to calculations with and without the Hartree–Fock (HF) term,
showing its importance. (b) The spin dephasing times measured and calculated for constant, high excitation density and variable polarization degree. From
Stich et al. [42].
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Fig. 62. GaAs (001) quantumwell: (a) Spin dephasing time as a function of sample temperature, for different initial spin polarizations. The measured data
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intensity-dependent photoilluminance measurements as a function of the nominal sample temperature, for different pump beam fluence and initial spin
polarization, under experimental conditions corresponding to the measurements shown in (a). The measured data points are represented by solid points,
while the curves serve as a guide to the eye. From Stich et al. [42].

spin dephasing time at low and high spin polarizations [44]. Fig. 62(a) shows the measured temperature dependences
of the spin dephasing time at different initial spin polarizations. As predicted, the spin dephasing time increases with
increasing temperature at small spin polarization but decreases at large spin polarization. The theoretical calculations also
nicely reproduced the experimental data. The hot-electron temperatures in the calculation were taken from the experiment
(Fig. 62(b)). The effective magnetic field from the Hartree–Fock term has been measured by Zhang et al. [327] from the sign
switch of the Kerr signal and the phase reversal of Larmor precessions with a bias voltage in a GaAs heterostructure.
Korn et al. [326] also estimated the average effect by applying an external magnetic field in the Faraday configuration, as

shown in Fig. 63(a) for the same sample reported above [41,42]. They compared the spin dephasing times of both large and
small spin polarizations as function of external magnetic field. Due to the effective magnetic field from the Hartree–Fock
term, the spin relaxation times are different under a small external magnetic field but become identical when the magnetic
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Fig. 63. (a) Spin dephasing times as a function of an external magnetic field perpendicular to the quantum well plane for small and large initial spin
polarization in GaAs (001) quantum well. (b) Same as (a) for large initial spin polarization and both polarities of the external magnetic field. From Korn
et al. [326].

field becomes large enough. From the merging point, they estimated the mean value of the effective magnetic field is below
0.4 T. They further showed that this effective magnetic field from the Hartree–Fock term cannot be compensated by the
external magnetic field, because it does not break the time-reversal symmetry and is therefore not a genuinemagnetic field,
as said above. It can be seen from Fig. 63(b) that the spin relaxation time at large spin polarization shows identical external
magnetic field dependences when the magnetic field is parallel or antiparallel to the growth direction.
The spin dynamics in the presence of a high in-plane electric fieldwas first studied byWeng et al. [569] in aGaAs quantum

well with only the lowest subband by solving the kinetic spin Bloch equations. To avoid the ‘‘runaway’’ effect [849,850], the
electric field was calculated up to 1 kV/cm. Then Weng and Wu further introduced the second subband into the model and
the in-plane electric field was increased to 3 kV/cm [844]. Zhang et al. included the L valley and the electric field was further
increased to 7 kV/cm [845].
The effect of the in-plane electric field on the spin relaxation in a system with strain was investigated by Jiang and

Wu [570]. Zhou et al. also investigated the electric-field effect at low lattice temperatures [372].
The in-plane electric field leads to two effects. (i) It shifts the center-of-mass of electrons to kd = m∗vd = m∗µE with

µ representing the mobility, which further induces an effective magnetic field via the D’yakonov–Perel’ term [569]. The
induced effective magnetic field can be estimated by

Btot = B+ B∗ = B+
1
gµB

∫
dk(fk 12 − fk− 12 )�(k)

/∫
dk(fk 12 − fk− 12 ). (187)

(ii) The in-plane electric field also leads to the hot-electron effect [851]. By taking the electron distribution function as the
drifted Fermi function fkσ = {exp[((k−m∗vd)2/2m∗−µσ )/kBTe]+1}−1 in the case with only the lowest subband included,
the effective magnetic field for small spin polarization can be roughly estimated as [569]

B∗ = γDm∗
2
vd{Ef /[2(1− e−Ef /kBTe)] − Ec}/gµB, (188)

with Ef and Ec , the Fermi and confinement energies of the quantum well, respectively. Te is the hot-electron temperature.
Fig. 64(a) shows the spin precession in the presence of a high electric field in a 15 nm quantumwell at T = 120 K. One finds
that the spin precesses even in the absence of any external magnetic field and the spin precession frequency changes with
the direction of the electric field in the presence of an external magnetic field. The effective magnetic field deduced from
the spin precessions in Fig. 64(a) is plotted in Fig. 64(b), which is in good agreement with the corresponding result from
Eq. (188).
The spin relaxation time can be effectively manipulated by the in-plane electric field. When only the lowest subband

is considered, the electric field influences the spin relaxation via concurrent effects of the increase of the inhomogeneous
broadening by driving electrons to higher momentum states and the increase/decrease (depending on the type of scattering
and also the degenerate/nondegenerate limit) of scattering from the hot-electron temperature. Weng et al. reported a rich
electric field dependence of the spin relaxation time under various conditions [569].When the electric field is high enough so
that higher subbands and/or valleys are involved, due to the different spin–orbit coupling strengths and/or effective masses
in different subbands and valleys, the spin relaxation time can be manipulated more effectively [844,845]. This can be seen
from Fig. 65(a) and (b) where spin relaxation times are plotted against the in-plane electric field in GaAs quantum wells,
with the second subband and the L valley being populated at high electric field, respectively. The inhomogeneous broadening
comes from the Dresselhaus terms. In the Γ valley, it reads

hΓ (kΓ ) =
γ

2

(
kΓ x(k2Γ y − 〈k

2
Γ z〉), kΓ y(〈k

2
Γ z〉 − k

2
Γ x), 〈kΓ z〉(k

2
Γ x − k

2
Γ y)
)
, (189)
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and in the L valley, it reads [106,142]

hLi(kLi) = β
(
kLix, kLiy, 〈kLiz〉

)
× n̂i. (190)

Here n̂i is the unit vector along the longitudinal principal axis of the Li valley. Note the coordinate system of above equations
has been given in Ref. [852]. kΓ = k and kLi = k − K0Li with K0Li =

π
a0
(1,±1,±1). a0 is the lattice constant. 〈kλz〉 (〈k2λz〉)

represents the average of the operator−i∂/∂z−K 0λz [(−i∂/∂z−K
0
λz)
2] over the electron states inλ valley. Under the infinite-

depth assumption, 〈n|k2λz |n〉 =
n2π2

a2
with n, the subband index and a, the well width. Therefore, when the linear-k terms are

dominant, the inhomogeneous broadening of the second subband in hΓ (kΓ ) is four times as large as the first subband. Also a
tight-binding calculation by Fu et al. [142] indicates β = 0.026 eV nm, which is much larger than 12γD〈k

2
Γ z〉 ≈ 0.001 eV ·nm

when only the lowest subband of the Γ valley is considered and the well width is set to be 7.5 nm [845]. Therefore, the
inhomogeneous broadenings of the higher subband and valley are much larger. It is therefore easy to understand that the
spin relaxation time decreases with increasing electric field when more electrons are excited to a higher subband and/or
valley.
By simply looking at the inhomogeneous broadenings of Γ and L valleys, one may naively come to the conclusion that

the spin relaxation rate of electrons in the L valley should be much faster than that in the Γ valley. Also by noticing the
g-factor of the L valley gL = 1.77 [853], which is also much larger than that of the Γ valley, gΓ = −0.44 [204], one may
also speculate that the spin precession under a magnetic field in the Voigt configuration should be much faster in the L
valley than in the Γ valley. Zhang et al. showed both are in fact incorrect [845]. They calculated the spin precessions of
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electrons in the Γ and L valleys in a GaAs quantum well with both high in-plane electric field and a magnetic field in the
Voigt configuration, and discovered that the spin precession frequencies as well as spin dephasing times of both valleys
are identical to each other, as shown in Fig. 66, and the ‘‘effective’’ g-factor of the L valley from the spin precession is 0.44,
which is of the same magnitude as that of the Γ valley. The physics leading to these unexpected results was revealed as
due to the strong intervalley electron–phonon scattering. As shown in Fig. 67, where the spin precessions of an n-type
(001) GaAs quantum well under an electric field E = 2 kV/cm are plotted with all the scatterings included (a), without the
intervalley electron–phonon scattering (b), without the intervalley electron–electron Coulomb scattering (c), and without
intervalley scattering (d), respectively. It is seen that when the intervalley electron–phonon scattering is switched off, the
spin polarization in the L valleys decays pretty fast. This is in contrast to the multisubband case addressed in the previous
subsection where the intersubband Coulomb scattering is the cause of the identical spin relaxation times of each subband.

5.4.4. Effect of the Coulomb scattering on the spin dephasing and relaxation
As addressed in the previous subsections, the Coulomb scattering can contribute to the spin dephasing and relaxation

due to the D’yakonov–Perel’ mechanism. A natural question would be how the Coulomb scattering changes the
spin dephasing/relaxation time. Glazov and Ivchenko pointed out that the Coulomb scattering can prolong the spin
dephasing/relaxation time limited by the D’yakonov–Perel’ mechanism. Weng et al. compared the electron spin dephasing
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times in a (001) GaAs quantum well with and without the Coulomb scattering in the presence of an in-plane electric
field [569]. As shown in Fig. 68(a), in which the spin dephasing times with and without the Coulomb scattering are plotted
against the in-plane electric field, it is seen that adding Coulomb scattering always leads to a longer spin dephasing time
both near (at E ∼ 0) and far away from (with hot-electron effect) the equilibrium. This looks quite contradictory to the
previous understanding of optical dephasing [833], where adding a Coulomb scattering always leads to a shorter optical
dephasing time. Also, as stated in Section 5.2, in the presence of the inhomogeneous broadening, adding a new scattering
leads to a new dephasing channel. How can the additional ‘‘channel’’ leads to a longer spin dephasing time? To understand
this, Lü et al. [363] put a scaling coefficient γ in front of the D’yakonov–Perel’ term and compared the spin dephasing
times of electrons, heavy holes and light holes in a (001) GaAs quantum well, with and without the Coulomb scattering,
as function of γ . As shown in Fig. 68(b) and (c), for larger γ , i.e., in the weak scattering limit, adding Coulomb scattering
always leads to a shorter spin dephasing time. However, for small γ , i.e., in the strong scattering limit, adding Coulomb
scattering leads to a longer spin dephasing time. This can be understood as follows: In the weak scattering limit, the counter
effect of the scattering to the inhomogeneous broadening is pretty weak, and the only effect of the scattering is an additional
spin dephasing channel. However, in the strong scattering limit, the counter effect of the scattering is more pronounced and
hence the spin dephasing time is increased by adding the Coulomb scattering. It is noted that γ = 1 corresponds to the
genuine case and from the figure one notices that electrons happen to be in the strong scattering limit. Therefore adding the
Coulomb scattering leads to a longer spin dephasing time. However, both heavy and light holes are in the weak scattering
limit. Consequently adding the Coulomb scattering makes the spin dephasing time shorter. In fact, for optical dephasing
problem, the inhomogeneous broadening in Eq. (140) happens to be in the weak scattering limit. Therefore, the Coulomb
scattering always causes a shorter optical dephasing time [833].
The strong/weak scattering limit can be measured by ξ ≡ |g∗µBΩ(k)|τ ∗p . When ξ � 1 (� 1), the system is in the

weak (strong) scattering limit. Here τ ∗p is the effective momentum scattering time from not only the carrier–phonon and
carrier–impurity scatterings, but also from the Coulomb scattering [591,615]. It is also noted that the regime of strong and
weak scattering can be changed by temperature even for the same sample. It has been shown by the Harley group [368,591]
and also later by Stich et al. [41,199] that at low temperature, electrons in a high mobility (001) GaAs quantum well can be
in the weak scattering limit. Also for holes in p-type (001) GaAs quantum wells, Lü et al. have shown that the system can
be changed from the weak scattering limit to the strong one by impurity density76 and temperature, etc. [363]. In fact, in
the strong (weak) scattering limit, besides the Coulomb scattering, adding any scattering can cause a longer (shorter) spin
dephasing/relaxation time.

5.4.5. Non-Markovian effect in the weak scattering limit
As stated in Section 5.3, the scattering terms of the kinetic spin Bloch equations are given by Eqs. (159) and (160),

which are time-integrals. By applying the Markovian approximation (Eq. (161)), one can carry out the time-integral and
the scattering terms are simplified to Eq. (162), where one has the energy conservation (δ-functions in Eq. (161)) and the
trace of the history disappears. This approximation is valid only in the strong scattering limit where the spin precession
between two adjacent scatterings is negligible. However, in the weak scattering limit, electron spin can experience many
precessions between two scattering events, and the Markovian approximation is invalid. In this circumstance one has to
trace back the history by carrying out the time integral. Hence the dynamics becomes non-Markovian.

76 It is noted that the impurity density should be 1/4 of the value presented in Ref. [363].
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Fig. 69. Time evolutions of the incoherently summed spin coherence ρHH of heavy holes in GaAs (001) quantum wells with Rashba spin–orbit coupling
strength (a) γ 7h7h54 Ezm0/ h̄2 = 6.25 nm, (b) 2.5 nm, (c) 0.625 nm and (d) 0.25 nm, respectively. γ 7h7h54 is the Rashba coefficient and Ez is the electric field
from the gate voltage [363]. Correspondingly, the mean spin precession timeΩ−1 is (a) 0.046 ps, (b) 0.116 ps, (c) 0.463 ps and (d) 1.160 ps. Solid curve: in
the non-Markovian limit; Dashed curve: in the Markovian limit. The well width a = 5 nm and the temperature T = 300 K. From Zhang and Wu [854].

Glazov and Sherman first investigated the electron spin relaxation in GaAs quantum wells under a strong magnetic
field by the Monte Carlo simulation [381]. They reported a longer non-Markovian spin relaxation time [381]. Zhang and
Wu studied the non-Markovian hole spin dynamics in p-type GaAs quantum wells using a kinetic spin Bloch equation
approach [854]. By performing time derivative of the time integral in Eq. (160), they transferred the integrodifferential
kinetic spin Bloch equations in the non-Markovian limit to a larger set of differential equations. They compared the time
evolutions of the incoherently summed spin coherence of heavy holes in both the Markovian and non-Markovian limits at
different Rashba strengths. From the decay of the incoherently summed spin coherence, one may extract T2.77 As shown
in Fig. 69(d), in the strong scattering limit, both approaches yield the same spin dephasing time. Nevertheless, in the weak
scattering limit, the non-Markovian kinetics gives a longer hole spin dephasing time, which is in good agreement with the
prediction of Glazov and Sherman [381]. The physics behind this phenomena is easily understood from the nature of non-
Markovian scattering,which keeps somememory of the coherence during the scattering.What ismost important is that they
predicted quantum spin beats when the spin precession time is comparable to the momentum scattering time. The beats
are solely from the non-Markovian effect (or memory effect), with the beating frequency being exactly the longitudinal
optical-phonon frequency (see Fig. 69(b) and (c)). The quantum spin beats are similar to the longitudinal optical-phonon
quantum beats in the optical four wave mixing signal [855]. However, a measurement of these quantum spin beats cannot
be performed by the regular Faraday/Kerr rotation measurement. A possible way is through the spin echo measurement.

5.4.6. Electron spin relaxation due to the Bir–Aronov–Pikus mechanism in intrinsic and p-type GaAs quantum wells
It has long been believed in the literature that the Bir–Aronov–Pikus mechanism is dominant at low temperature in p-

type samples and has important contribution to intrinsic samples with high photo-excitation [574,687–689,693,856,857].

77 Instead of T ∗2 which is measured from the Faraday/Kerr rotation experiment.
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These conclusions were made based on Eq. (66) from the Fermi Golden rule, which in the (001) quantum well reads [109]

1
τBAP(k)

= 4π
∑
k′q

δ(εek−q − ε
e
k + ε

h
k′ − ε

h
k′−q)|M(K− q)|2f hk′−q(1− f

h
k ) (191)

with K = k+ k′ and

|M(k− q)|2 =
9∆E2LT

16|φ3D(0)|4

[∑
qz

fex(qz)(K− q)2

q2z + (K− q)2

]2
. (192)

Here ∆ELT is the longitudinal-transverse splitting in bulk. |φ3D(0)|2 = 1/(πa30) denotes the bulk exciton state at zero
relative distance. fex(qz) is the form factor [109,118]. In the meantime, the spin relaxation time from the D’yakonov–Perel’
mechanism used for comparison was calculated without the Coulomb scattering, which has been demonstrated to be
important in the previous sections.
Zhou and Wu reexamined the problem using the fully microscopic kinetic spin Bloch equation approach [109]. They

constructed the kinetic spin Bloch equations in intrinsic and p-type (001) GaAs quantum wells with the electron–phonon,
electron–impurity, electron–electron Coulomb and electron–heavy-hole Coulomb scatterings explicitly included. The
electron–heavy-hole Coulomb scattering includes the spin-conserving scattering and the spin–flip scattering (the
Bir–Aronov–Pikus term). They also extended the screening under the random phase approximation Eq. (169) to include
the contribution from heavy holes:

ε(q) = 1−
∑
qz

vQ fe(qz)
∑
k,σ

fk+q,σ − fk,σ
εek+q − ε

e
k
−

∑
qz

vQ fh(qz)
∑
k′,σ

f hk′+q,σ − f
h
k′,σ

εhk′+q − ε
h
k′
, (193)

where fe(qz) and fh(qz) are the form factors [109]. The scattering terms from the spin–flip–electron-heavy hole exchange
interaction (Bir–Aronov–Pikus term) read

∂ fk,σ
∂t

∣∣∣∣
BAP
= −2π

∑
k′,q

δ(εek−q − ε
e
k + ε

h
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h
k′−q)|M(K− q)|2

×[(1− f hk′,σ )f
h
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h
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h
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It is noted from Eq. (194) that there are quadratic terms in the sense of the electron distribution function fkσ . This
immediately implies that one cannot recover Eq. (191) from the Fermi Golden rule. The only way to recover Eq. (191) is
under the elastic scattering approximation: εek−q ≈ ε

e
k, and ε

h
k′ ≈ ε

h
k′−q where the quadratic terms exactly cancel each other

and the spin relaxation time is given by Eq. (191). It is well known that the elastic scattering approximation is valid only in
the non-degenerate regime at high temperatures. When the temperature is low enough so that electrons are degenerate,
the elastic scattering approximation is not valid any more. Therefore the quadratic terms become non-negligible. In fact,
the terms (1 − fk−q,−σ ) and (1 − fkσ ) in Eq. (194) come from the Pauli blocking, which reduces the spin relaxation rate.
Therefore the Bir–Aronov–Pikus mechanism becomes less important at low temperatures when the Pauli blocking becomes
important. This effect wasmissing in the literature [574,687–689,693,856,857]. In Fig. 70(a), the spin relaxation times due to
the Bir–Aronov–Pikus mechanism in intrinsic GaAs quantumwell calculated from the full spin–flip electron–hole exchange
scattering (Eq. (194)) are compared with those without the Pauli blocking at different pumping densities. It is seen that
the previous calculations based on Eq. (191) always overestimate the importance of the Bir–Aronov–Pikus mechanism at
low temperatures. In Fig. 70(b), the spin relaxation times of intrinsic GaAs quantum wells due to the Bir–Aronov–Pikus
mechanism and the D’yakonov–Perel’ mechanism are compared at different photo-excitations. It is seen that instead of
being important at low temperature, the Bir–Aronov–Pikus mechanism is even negligible at low temperature when the
Pauli blocking becomes important. Two errors in the previous treatment may cause the incorrect conclusion that the
Bir–Aronov–Pikus mechanism is dominant at low temperature: (i) The previous theory overlooked the Pauli blocking
and hence overestimated the importance of the Bir–Aronov–Pikus mechanism; (ii) It overlooked the contribution of the
Coulomb scattering to the D’yakonov–Perel’ mechanism and thus underestimated the importance of the D’yakonov–Perel’
mechanism. It is also noted that the temperature at which the Bir–Aronov–Pikus may have some contribution is around the
hole Fermi temperature. Similar conclusions were also obtained in p-type GaAs quantum wells [109].
Later, Zhou et al. performed a thorough investigation of electron spin relaxation in p-type (001) GaAs quantum

wells by varying impurity, hole and photo-excited electron densities over a wide range of values [112], under the idea
that very high impurity density and very low photo-excited electron density may effectively suppress the importance
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Fig. 70. GaAs (001) quantumwells: (a) Spin relaxation time due to the Bir–Aronov–Pikusmechanismwith full spin–flip electron–hole exchange scattering
(solid curves) and with only the linear terms in the spin–flip electron–hole exchange scattering (dotted curves) at different electron densities against
temperature T . n0 = 1011 cm−2 . (b) Spin relaxation time due to the Bir–Aronov–Pikus (solid curves) and D’yakonov–Perel’ (dashed curves) mechanisms
and the total spin relaxation time (dash-dotted curves) vs. temperature T in intrinsic quantum wells at different densities (n = p = 2, 4, 6n0) when well
width a = 20 nm and impurity density ni = n. n0 = 1011 cm−2 . From Zhou and Wu [109].
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Fig. 71. Ratio of the spin relaxation time due to the Bir–Aronov–Pikus mechanism to that due to the D’yakonov–Perel’ mechanism, τBAP/τDP , in GaAs (001)
quantum wells as function of temperature and hole density with (a) Ni = 0, Nex = 1011 cm−2; (b) Ni = 0, Nex = 109 cm−2; (c) Ni = Nh , Nex = 1011 cm−2;
(d) Ni = Nh , Nex = 109 cm−2 . The black dashed curves indicate the cases satisfying τBAP/τDP = 1. Note that the smaller the ratio τBAP/τDP is, the more
important the Bir–Aronov–Pikusmechanism becomes. The yellow solid curves indicate the cases satisfying ∂µh [NLH(1)+NHH(2) ]/∂µhNh = 0.1. In the regime
above the yellow curve the multi-hole-subband effect becomes significant. From Zhou et al. [112].

of the D’yakonov–Perel’ mechanism and the Pauli blocking. Then the relative importance of the Bir–Aronov–Pikus and
D’yakonov–Perel’ mechanismsmay be reversed. This indeed happens, as shown in the phase-diagram-like picture in Fig. 71,
where the relative importance of the Bir–Aronov–Pikus and D’yakonov–Perel’ mechanisms is plotted as function of hole
density and temperature at low and high impurity densities and photo-excitation densities. For the situation of high hole
density they even includedmulti-hole subbands as well as the light hole band. It is interesting to see from the figures that at
relatively high photo-excitations, the Bir–Aronov–Pikus mechanism becomes more important than the D’yakonov–Perel’
mechanism only at high hole densities and high temperatures (around hole Fermi temperature) when the impurity is
very low [zero in Fig. 71(a)]. Impurities can suppress the D’yakonov–Perel’ mechanism and hence enhance the relative
importance of the Bir–Aronov–Pikus mechanism. As a result, the temperature regime is extended, ranging from the hole
Fermi temperature to the electron Fermi temperature for high hole density. When the photo-excitation is weak, so that the
Pauli blocking is less important, the temperature regime where the Bir–Aronov–Pikus mechanism is important becomes
wider compared to the high excitation case. In particular, if the impurity density is high enough and the photo-excitation
is so low that the electron Fermi temperature is below the lowest temperature of the investigation, the Bir–Aronov–Pikus
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a

b

Fig. 72. Spin relaxation times of electrons in GaAs (001) quantum wells due to the D’yakonov–Perel’ and Bir–Aronov–Pikus mechanisms, the total spin
relaxation time together with the ratio τBAP/τDP vs. temperature T for Nex = 109 cm−2 (curves with •), 3 × 1010 cm−2 (curves with N) and 1011 cm−2
(curves with �) with hole density Nh = 5 × 1011 cm−2 and impurity densities (a) Ni = 0 and (b) Ni = Nh . The electron Fermi temperatures for those
excitation densities are T eF = 0.41, 12.4 and 41.5 K, respectively. The hole Fermi temperature is T

h
F = 124 K. Note that the scale of τBAP/τDP is on the

right-hand side of the frame. From Zhou et al. [112].

mechanism can dominate the whole temperature regime of the investigation at sufficiently high hole density, as shown in
Fig. 71(d). The corresponding spin relaxation times of each mechanism under high or low impurity and photo-excitation
densities are demonstrated in Fig. 72. They also discussed the density dependences of spin relaxation with some intriguing
properties related to the high hole subbands [112].
The predicted Pauli-blocking effect in the Bir–Aronov–Pikusmechanism has been partially demonstrated experimentally

by Yang et al. [681], as shown in Fig. 73. They showed by increasing the pumping density, the temperature dependence of
the spin dephasing time deviates from the one with the Bir–Aronov–Pikus mechanism and the peaks at high excitations
agree well with those predicted by Zhou and Wu [109].

5.4.7. Spin dynamics in the presence of a strong THz laser field in quantum wells with strong spin–orbit coupling
The influence of a strong THz field,which can effectively change the electron orbitalmomentums and significantlymodify

the electron density of states, has been extensively studied in spin-unrelated problems such as the dynamic Franz–Keldysh
effect and the optical side-band effect [58,59,61,82,841,858]. So far, the application of a strong THz field to the spin systems
is very limited and only in theory. Johnsen is the first one who investigated the optical sideband generation in systems
with spin–orbit coupling and suggested the formation of odd sidebands which are otherwise absent without the spin–orbit
coupling [859]. Cheng and Wu showed theoretically that in InAs quantum wells, a strong in-plane THz electric field can
induce a large spin polarization oscillating at the same frequency as the THz driving field [841]. Later Jiang et al. and Zhou
suggested similar effects in single charged InAs quantum dots [860] and in p-type GaAs (001) quantum wells [861]. These
calculations in Refs. [841,859–861] are performedwithout any dissipation. However, in reality, due to the scattering there is
spin dephasing and relaxation.Whether the large spin polarization oscillations are still kept in the presence of the dissipation
is unanswered in Refs. [841,860,861]. Also the THz field can effectively affect the density of states, and also cause the hot-
electron effect, which in turn should have a pronounced effect on the spin relaxation/dephasing. To answer these questions,
Jiang et al. extended the kinetic spin Bloch equations to study the spin kinetics in the presence of strong THz laser fields
via the Floquet–Markov approach, first in quantum dots [482], then in quantum wells [69]. Their investigation suggested
that the dissipation does not block large THz spin polarization oscillations, and the spin relaxation and dephasing can be
effectively manipulated by the THz field.
In the Coulomb gauge A(t) = E cos(Ωt)/Ω and the scalar potentialΦ = 0, the electron Hamiltonian in a (001) quantum

well with small well width along the z-axis reads

He =
∑
kσσ ′
Hσσ

′

0 (k, t)ĉĎkσ ĉkσ ′ , (197)
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Fig. 73. Kerr rotation of the 1/3 monolayer InAs sample at different temperatures measured at B = 0.82 T. The pumping density is about 1.5× 1017/cm3 .
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monolayer InAs sample with various pumping density at low temperature as specified is also shown for comparison. From Yang et al. [681].

with

Ĥ0(k, t) =
[k+ eA(t)]2

2m∗
1̂+ αR{σ̂xky − σ̂y[kx + eA(t)]}

= {εk + γEkxΩ cos(Ωt)+ Eem[1+ cos(2Ωt)]}1̂+ αR(σ̂xky − σ̂ykx)− αRσ̂yeE cos(Ωt)/Ω. (198)

Here εk = k2
2m∗ , γE =

eE
m∗Ω2

and Eem = e2E2

4m∗Ω2
. Ω is the THz frequency and αR is the Rashba coefficient. It is noted that the

last term manifests that the THz electric field acts as a THz magnetic field along the y axis

Beff = −2αReE cos(Ωt)/ (gµBΩ) , (199)

where g is the electron g-factor. Wewill show later that this THz-field-induced effectivemagnetic field hasmany important
effects on spin kinetics. The term proportional to Eem is responsible for the dynamical Franz–Keldysh effect [841,862,863].
This term does not contain any dynamic variable of the electron system and thus has no effect on the kinetics of the electron
system. Usually, the largest time-periodic term is the term γEkxΩ cos(Ωt), where the sideband effect mainly comes from.
Under an intense THz field, this term can be comparable to or larger than εk. The Hamiltonian of the scattering remains all
the same as before, e.g., Eqs. (152)–(154).
The Schrödinger equation for an electron with momentum k reads

i∂tΨk(t) = Ĥ0(k, t)Ψk(t). (200)

According to the Floquet theory [864], the solution to the above equation is

Ψkη(t) = eik·r−iεktφ1(z)ξkη(t)e−i[γEkx sin(Ωt)+Eemt+Eem
sin(2Ωt)
2Ω ]

≡ eik·rΦη(z)e−i[γEkx sin(Ωt)+Eemt+Eem
sin(2Ωt)
2Ω ], (201)

with η = ± denoting the spin branch and φ1(z) being the wavefunction of the lowest subband. ξkη(t) =
e−iykηt

∑
nσ υ

kη
nσ einΩtχσ where ykη and υ

kη
nσ are the eigenvalues and eigenvectors of the equation

(ykη − nΩ)υkη
nσ =

iσ
2Ω

αReE(υ
kη
n−1,−σ + υ

kη
n+1,−σ )+ αR(ky + iσkx)υ

kη
n,−σ . (202)

This equation is equivalent to Eq. (2) in Ref. [841]. For each k, the spinors {|ξkη(t)〉} at any time t form a complete-orthogonal
basis of the spin space [482,865,866]. The time evolution operator for state k can be written as

Ûe0(k, t, 0) =
∑
η

|ξkη(t)〉〈ξkη(0)|e−i[εkt+γEkx sin(Ωt)]e−i[Eemt+Eem sin(2Ωt)/(2Ω)]. (203)
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a b

Fig. 74. The average magnetic moment My vs. time for a InAs (001) quantum well at E = 1, 4, 7 and 10 kV/cm for fixedΩ = 1 THz (a) atΩ = 0.4, 1, 2
and 4 THz for fixed E = 3 kV/cm (b). The electron density is N = 1011 cm−2 . From Cheng and Wu [841].

At zero temperature and in the absence of any scattering, the spectral function is [841]

A(k; t1, t2) =
∑
η=±1

Φη(k, t1)ΦĎ
η(k, t2), (204)

from which the density matrix reads

ρ(t1, t2) =
1

(2π)2

∫
dkA(k; t1, t2). (205)

Note ρ(t1, t2) is a 2×2 matrix in the spin space. In the collinear spin space, ρ↑↑ = ρ↓↓. The average magnetic moment from
the THz field (along the x-axis) and the Rashba field is given by

M(T ) =
(
0,−

gµB
n↑ + n↓

∫ Ef (T )

−∞

dω Imρ↑,↓(ω, T ), 0
)
, (206)

with Ef (T ) determined from nσ = 1
2π

∫ Ef (T )
−∞

dωρσ ,σ (ω, T ). Here T = (t1+t2)/2 andω is Fourier transferred from t = t1−t2.
Fig. 74 shows the average magnetic momentMy versus the time T at different electric fields and THz frequencies. It is seen
that a THz magnetic signal is effectively induced by the THz electric one.
To extend the kinetic spin Bloch equations to the situation with an intense THz field, Jiang et al. pointed out [69] that it is

insufficient to include this field only in the driving term, as in the previous investigation of the hot-electron effect where a
static electric field is applied [372,569]. The correct way is to evaluate the collision integral with the Floquet wavefunctions,
i.e., the solution of the time-dependent Schrödinger equation (200) [867]. Moreover, the Markovian approximation should
be made with respect to the spectrum determined by the Floquet wavefunctions [867]. These improvements constitute the
Floquet–Markov approach [865,867], which works well when the driven system is in a dynamically stable regime and the
system–reservoir coupling can be treated perturbatively. With the Floquet–Markov approach and by projecting the density
matrix in the Floquet picture ρ̂Fk(t) = Û

e
0
Ď(k, t, 0)ρ̂k(t)Ûe0(k, t, 0), the kinetic spin Bloch equations read

∂t ρ̂
F
k(t) = ∂t ρ̂

F
k(t)

∣∣
coh + ∂t ρ̂

F
k(t)

∣∣
scat, (207)

where ∂t ρ̂Fk(t)|coh and ∂t ρ̂
F
k(t)|scat are the coherent and scattering terms, respectively. The coherent terms, which

describe the coherent precession determined by the electron Hamiltonian He and the Hartree–Fock contribution of the
electron–electron Coulomb interaction, can be written as

∂t ρ̂
F
k(t)

∣∣
coh = i

∑
k′,qz

Vk−k′,qz |I(iqz)|
2
[
Ŝk,k′(t, 0)ρ̂

F
k′(t)Ŝk′,k(t, 0), ρ̂

F
k(t)

]
. (208)

Here Σ̂FHF(k, t) = −
∑

k′,qz Vk−k′,qz |I(iqz)|
2ρ̂Fk′(t) is the Coulomb Hartree–Fock self-energy. The scattering terms are

composed of terms due to the electron–impurity (∂tρFk
∣∣
ei), electron–phonon (∂tρ

F
k

∣∣
ep) and electron–electron (∂tρ

F
k

∣∣
ee)
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scatterings, respectively. Under the generalized Kadanoff-Baym Ansatz [833], these scattering terms read [69]

∂tρ
F(ηη′)
k (t)

∣∣∣
ei
= −

η1η2η3∑
k′,qz ,n

πniU2k−k′,qz |I(iqz)|
2
[{
S(ηη1)k,k′ (t, 0)S

(n)(η2η3)
k′,k δ(nΩ + ε̄k′η2 − ε̄kη3)

×

(
ρ
>F(η1η2)
k′ (t)ρ<F(η3η

′)

k (t)− ρ<F(η1η2)k′ (t)ρ>F(η3η
′)

k (t)
)}
+
{
η↔ η′

}∗]
, (209)

∂tρ
F(ηη′)
k (t)

∣∣∣
ep
= −

η1η2η3∑
k′,qz ,n,λ,±

π |Mλ,k−k′,qz |
2
|I(iqz)|2

[{
S(ηη1)k,k′ (t, 0)S

(n)(η2η3)
k′,k e∓itωλ,k−k′,qz δ(±ωλ,k−k′,qz

+ nΩ + ε̄k′η2 − ε̄kη3)
(
N±
λ,k−k′,qz

ρ
>F(η1η2)
k′ (t)ρ<F(η3η

′)

k (t)− N∓
λ,k−k′,qz

ρ
<F(η1η2)
k′ (t)ρ>F(η3η

′)

k (t)
)}

+
{
η↔ η′

}∗]
, (210)

∂tρ
F(ηη′)
k (t)

∣∣∣
ee
= −

η1...η7∑
k′,k′′,n,n′

π
[∑
qz

Vk−k′,qz |I(iqz)|
2
]2[{

T (ηη1)k,k′ (t, 0)T
(n′)(η2η3)
k′,k T (n−n

′)(η4η5)
k′′,k′′−k+k′ T

(η6η7)
k′′−k+k′,k′′(t, 0)

× δ(nΩ + ε̄k′η2 − ε̄kη3 + ε̄k′′η4 − ε̄k′′−k+k′η5)
(
ρ
>F(η1η2)
k′ (t)ρ<F(η3η

′)

k (t)ρ<F(η5η6)k′′−k+k′ (t)ρ
>F(η7η4)
k′′ (t)

− ρ
<F(η1η2)
k′ (t)ρ>F(η3η

′)

k (t)ρ>F(η5η6)k′′−k+k′ (t)ρ
<F(η7η4)
k′′ (t)

)}
+
{
η↔ η′

}∗]
. (211)

In these equations, N±
λ,k−k′,qz

= Nλ,k−k′,qz +
1
2 (1±1) stands for the phonon number, ni is the impurity density, ρ̂

>
k = 1̂− ρ̂k,

ρ̂<k = ρ̂k, and ε̄kη = εk + ykη .

S(η1η2)k′,k (t, 0) = 〈ξk′η1(t)|ξkη2(t)〉e
i[(εk′−εk)t+γE sin(Ωt)(k

′
x−kx)] =

∑
n

S(n)(η1η2)k′,k eit(nΩ+ε̄k′η1−ε̄kη2 ), (212)

with

S(n)(η1η2)k′,k =

∑
mσ

Fk
′η1∗
m σ Fkη2n+m σ . (213)

Here Fkηn σ =
∑
m υ

kη
n+m σ Jm(γEkx)with Jm(x) standing for them-th order Bessel function.

T (η1η2)k′,k (t, 0) = 〈ξk′η1(t)|ξkη2(t)〉e
i(εk′−εk)t =

∑
n

T (n)(η1η2)k′,k eit(nΩ+ε̄k′η1−ε̄kη2 ), (214)

with

T (n)(η1η2)k′,k =

∑
mσ

υk′η1∗
m σ υ

kη2
n+m σ . (215)

{η↔ η′} stands for the same terms as in the previous {} but with the interchange η↔ η′. The term of the electron–electron
scattering is quite different from those of the electron–impurity and electron–phonon scattering, as the momentum
conservation eliminates the term of eiγE sin(Ωt)kx .
The above equations clearly show the sideband effects, i.e., nΩ in the δ-functions. The extra energy, nΩ , is provided by

the THz field during each scattering process. This makes transitions from the low-energy states (small k) to high-energy
ones (large k) become possible, even through the elastic electron–impurity scattering. These processes are the sideband-
modulated scattering processes.
The kinetic spin Bloch equations are solved numerically. After that, ρF(ηη

′)

k (t) for each k is obtained. From

ρ
F(ηη′)
k (t) = 〈ξkη(0)|Û

e Ď
0 (k, t, 0)ρ̂k(t)Û

e
0(k, t, 0)|ξkη′(0)〉 = 〈ξkη(t)|ρ̂k(t)|ξkη′(t)〉, (216)

by performing a unitary transformation, one comes to the single particle density matrix ρ̂k(t) in the collinear basis {|σ 〉}
which is composed by the eigenstates of σ̂z . In this spin space, the spin polarization along any direction can be obtained
readily, e.g., Sz =

∑
k
1
2 (ρ
↑↑

k −ρ
↓↓

k ), Sx =
∑

k Re{ρ
↑↓

k } and Sy = −
∑

k Im{ρ
↑↓

k }. From the temporal evolution of Sz , the spin
relaxation time is extracted.
By numerically solving the kinetic spin Bloch equations with all the scattering included, Jiang et al. showed that with

dissipation, the THz field can still pump a large (several percent) spin polarization which oscillates at the same frequency as
the THz field, as shown in Fig. 75. This feature coincides with what was predicted by Cheng and Wu in the dissipation-free
investigation [841]. What differs from the previous case is shown in Fig. 75 where there is a delay of Sy with respect to the
THz-field inducedmagnetic field Beff. This delay is due to the retarded response of the spin polarization to the spin pumping
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Fig. 75. Spin polarization along the y axis, Sy , as function of time with zero initial spin polarization for E = 0.5 kV/cm (solid curve) and 1.0 kV/cm (dotted
curve) in a InAs (001) quantumwell. T = 50 K andNi = 0.05Ne . The dashed curve is the THz-field-induced effectivemagnetic field Beff with E = 1.0 kV/cm.
Note that the scale of the dashed curve is on the right-hand side of the frame. From Jiang et al. [69].

a b c

Fig. 76. InAs (001) quantum wells: (a) Dependence of the spin relaxation time τ on THz field strength for impurity densities: Ni = 0 (•); Ni = 0.02Ne
(�); Ni = 0.05Ne (4). Solid curves: from full calculation; Dotted curve: from the calculation without the THz-field-induced effective magnetic field Beff .
(b) Dependence of the spin relaxation time τ on THz field strength for impurity densities: Ni = 0 (•); Ni = 0.02Ne (�); and Ni = 0.05Ne (4). T = 100 K
(solid curves) and 50 K (dashed curves). (c) Dependence of the hot-electron temperature Te on THz field strength for different impurity densities: Ni = 0
(•); Ni = 0.02Ne (�); Ni = 0.05Ne (4). T = 100 K (solid curves) and T = 50 K (dashed curves). From Jiang et al. [69].

caused by the THz field. The amplitude of the steady-state spin polarization S0y (the peak value of Sy) depends on the THz
field strength and the THz frequency. These features have been addressed in detail in Ref. [69].
Apart from pumping THz spin polarizations, the THz field can effectively manipulate the electron density of states and

cause the hot-electron effect. Both in turn can lead to the manipulation of the spin relaxation and dephasing. Fig. 76 shows
the dependence of the spin relaxation time on the THz field strength at different impurity densities (a) and temperatures (b),
togetherwith the corresponding hot-electron temperatures (c). Two consequences of the THz field lead to the rich behaviors
in the figure: (i) the total THz field-induced effectivemagnetic field B [B = Beff+Bav with Bav(t) = 2αR〈kx〉/(|g|µB) from the
Rashba spin–orbit coupling] and (ii) the hot-electron effect. Effect (i) can give a magnetic field as large as several tesla [2.6 T
per 1 kV/cm THz field with ν ≡ Ω/(2π) = 0.65 THz]. This effective magnetic field blocks the inhomogeneous broadening
from the Rashba spin–orbit coupling and thus elongates the spin relaxation time. Effect (ii) leads to the enhancement of
momentum scattering aswell as the inhomogeneous broadening,while the enhancement of the inhomogeneous broadening
tends to shorten the spin relaxation time, the boost of the scattering tends to increase (or decrease) the spin relaxation time
in the strong (or weak) scattering limit, as discussed in the previous sections. Similarly the spin relaxation time can also be
manipulated by the THz frequency, as shown in Fig. 77.

5.4.8. Spin relaxation and dephasing in GaAs (110) quantum wells
In symmetric GaAs (110) quantum wells, the D’yakonov–Perel’ term mainly comes from the Dresselhaus term which

reads

gµBΩnn
′

x (k) = γD[−(k2x + 2k
2
y)〈n|kz |n

′
〉 + 〈n|k3z |n

′
〉], (217)

gµBΩnn
′

y (k) = 4γDkxky〈n|kz |n′〉, (218)

gµBΩnn
′

z (k) = γD(k2x − 2k
2
y − 〈n|k

2
z |n
′
〉)δnn′ , (219)
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a b

Fig. 77. InAs (001) quantum wells: (a) Dependence of the spin relaxation time τ on THz frequency for impurity densities: Ni = 0 (•); Ni = 0.02Ne (�);
and Ni = 0.05Ne (4). Solid curves: from full calculation; Dotted curve: from the calculation without the THz-field-induced effective magnetic field Beff .
E = 1 kV/cm and T = 50 K. (b) Dependence of the hot-electron temperature Te on THz frequency for impurity densities: Ni = 0 (•); Ni = 0.02Ne (�); and
Ni = 0.05Ne (4). E = 1 kV/cm and T = 50 K. From Jiang et al. [69].

where 〈n|kmz |n
′
〉 =

∫
dzφ∗n (z)(−i∂/∂z)

mφn′(z) with φn(z) representing the envelope function of the electron in the n-th
subband. As 〈n|kz |n〉 = 〈n|k3z |n〉 = 0, when only the lowest subband is relevant, the effective magnetic field �(k) is along
the z-axis. Therefore, it was proposed both theoretically and experimentally [574,577,595,662] that the D’yakonov–Perel’
mechanism can not cause any spin relaxation if the spin polarization is along the z-axis.
Wu and Kuwata-Gonokami first pointed out that if a magnetic field in the Voigt configuration is applied in the system,

there is spin relaxation and dephasing due to the D’yakonov–Perel’ mechanism [675]. This can be seen from the coherent
term of the kinetic spin Bloch equations [675]:

∂ fkσ
∂t

∣∣∣∣
coh
= −gµBBImρk,σ−σ + 2Im

∑
q
Vqρk,σ−σρk+q,−σσ , (220)

∂ρk,σ−σ

∂t

∣∣∣∣
coh
=
i
2
gµBB(fkσ − fk−σ )− iσω(k)ρk,σ−σ + i

∑
q
Vq(fk+qσ − fk+q−σ )ρk,σ−σ

− i
∑
q
Vq(fkσ − fk−σ )ρk+q,σ−σ , (221)

where B is along the x-axis andω(k) = −gµBΩ11z (k). It is seen that in the presence of themagnetic field, the spin coherence
ρk,σ−σ is involved and ω(k) in Eq. (221) provides the inhomogeneous broadening which leads to the spin relaxation and
dephasing [675]. Experimentally Döhrmann et al. [388,667] observed a ‘‘turn on’’ of the spin relaxation by switching on the
magnetic field.
The spin relaxation in the absence of the magnetic field in symmetric GaAs (110) quantum wells with small well

width is an interesting problem and has been studied extensively [183,193,388,602,660,662,663,667]. In most of these
works, the main reason limiting the spin relaxation time is attributed to the Bir–Aronov–Pikus mechanism. In the spin
noise spectroscopy measurements by Müller et al. [660], the excitation of the semiconductor is negligible and hence the
Bir–Aronov–Pikusmechanism is avoided. They reported spin relaxation about 24 ns and attributed it to theD’yakonov–Perel’
mechanism due to the random Rashba fields caused by fluctuations in the donor density, as first proposed by Sherman
[294,657]. Zhou and Wu further investigated this effect using the kinetic spin Bloch equations, where the contribution of
the Coulomb scattering originally missed in Refs. [294,657] is included [670]. The method to incorporate the effect of the
Random Rashba spin–orbit coupling in the kinetic spin Bloch equation approach is to calculate the time evolutions of the
kinetic spin Bloch equations under sufficient Rashba coefficients αR, which are assumed to satisfy the Gaussian distribution
P(αR) = 1

√
2π∆
e−α

2
R/(2∆

2). The spin relaxation time is obtained by the slope of the coherently summed spin polarization

Sz =
∫
dαRP(αR)

∑
k

1
2
(f αRk↑ − f

αR
k↓ ). (222)

A calculation based on the kinetic spin Bloch equations can nicely reproduce the experimental findings byMüller et al. [660]
in Fig. 78(a). They also showed that at low impurity density, the Coulomb scattering has a strong influence on the spin
relaxation, as shown in Fig. 78(b), in which a peak due to the Coulomb scattering in the temperature dependence of the spin
relaxation time was predicted.
Besides the Random Rashba spin–orbit coupling field, Zhou andWu proposed a virtual intersubband spin–flip spin–orbit

coupling induced spin relaxation in GaAs (110) quantumwells and showed this mechanism becomes important for samples
with high impurity density [668].
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a b

Fig. 78. GaAs (110) quantum wells: (a) Spin relaxation times vs. the in-plane magnetic field strength from the KBSE approach and from the experimental
data in Ref. [660] with temperature T = 20 K, well width a = 16.8 nm, electron density Ne = 1.8 × 1011 cm−2 and impurity density Ni = 0.01 Ne . The
fitting parameters are Ew = 4.2 kV/cm, γD = 5.02 eVÅ

3 . (b) Spin relaxation times due to the randomRashba spin–orbit coupling inducedD’yakonov–Perel’
mechanism vs. temperature T for impurity densities Ni = Ne and 0.01 Ne with B = 0, a = 16.8 nm and Ne = 1.8× 1011 cm−2 . The corresponding Fermi
temperature is 75 K. The solid (dashed) curves represent the results calculated with (without) the electron–electron Coulomb scattering. From Zhou and
Wu [668].

5.4.9. Spin dynamics in paramagnetic Ga(Mn)As quantum wells
Jiang et al. further extended the kinetic spin Bloch equations to study the electron spin relaxation in paramagnetic

Ga(Mn)As quantum wells [111]. Besides the D’yakonov–Perel’ [101,102] and Bir–Aronov–Pikus [105,106] mechanisms,
they further included the spin relaxation mechanism due to the exchange coupling of the electrons and the localized Mn
spins (the s–d exchange scattering mechanism) [114] and the Elliott–Yafet mechanism [104,868] due to the presence of
the heavily doped Mn. In Ga(Mn)As, the Mn dopants can be either substitutional or interstitial; the substitutional Mn
accepts one electron whereas the interstitial Mn releases two. Direct doping in low-temperature molecular-beam epitaxy
growth gives rise to more substitutional Mn ions than interstitial ones, which makes the Ga(Mn)As a p-type semiconductor
[114,233,869,870]. In GaAs quantum wells near Ga(Mn)As layer, the Mn dopants can diffuse into the GaAs quantum wells,
where the Mn ions mainly take the interstitial positions, making the quantum well n-type [871–873].
The kinetic spin Bloch equations are the same as those in GaAs quantum wells, except for the additional terms in the

coherent and scattering terms associatedwith theMn spin S and the Elliott–Yafet mechanism. The additional coherent term
reads

∂t ρ̂k
∣∣coh
Mn = −i[Ĥ

sd
mf, ρ̂k], (223)

with Ĥmfsd = −NMnα〈S〉 ·
σ
2 . Here 〈S〉 is the average spin polarization of Mn ions and α is the s–d exchange coupling constant.

For simplicity, Mn ions are assumed to be uniformly distributed within and around the quantum wells with a bulk density
NMn. The additional scattering terms are those from the s–d exchange scattering and the Elliott–Yafet mechanism. The s–d
exchange scattering term is given by

∂t ρ̂k
∣∣scat
sd = −πNMnα

2Is
∑
η1η2k′

GMn(−η1 − η2)δ(εk − εk′)(ŝ
η1 ρ̂>k′ ŝ

η2 ρ̂<k − ŝ
η2 ρ̂<k′ ŝ

η1 ρ̂>k + H.c.), (224)

with GMn(η1η2) = 1
4Tr(Ŝ

η1 Ŝη2 ρ̂Mn). Ŝη and ŝη (η = 0,±1) are the spin ladder operators. The equation of motion for
Mn spin density matrix consists of three parts ∂t ρ̂Mn = ∂t ρ̂Mn

∣∣
coh + ∂t ρ̂Mn

∣∣
scat + ∂t ρ̂Mn

∣∣
rel. The first part describes the

coherent precession around the external magnetic field and the s–d exchange mean field, ∂t ρ̂Mn
∣∣
coh = −i

[
gMnµBB · Ŝ− α∑

k Tr(
σ̂
2 ρ̂k) · Ŝ, ρ̂Mn

]
. The second part represents the s–d exchange scattering with electrons ∂t ρ̂Mn

∣∣
scat = −

πα2

4∑
η1η2k δ(εk−εk

′)Tr(ŝ−η2 ρ̂<k′ ŝ
−η1 ρ̂>k )

[
(Ŝη1 Ŝη2 ρ̂Mn − Ŝη1 ρ̂MnŜη2)+ H.c.

]
. The third part characterizes theMn spin relaxation

due to other mechanisms, such as the p–d exchange interaction with holes or Mn-spin–lattice interaction, with a relaxation
time approximation, ∂t ρ̂Mn

∣∣
rel = −

(
ρ̂Mn − ρ̂

0
Mn

)
/τMn. Here ρ̂0Mn represents the equilibrium Mn spin density matrix. τMn is

the Mn spin relaxation time, which is typically 0.1 ∼ 10 ns [98].
After incorporating the Elliott–Yafet mechanism, besides the ordinary spin-conserving terms, there are spin–flip terms.

For electron–impurity scattering these additional terms are

∂t ρ̂k
∣∣EY
ei = −πni

∑
k′
δ(εk − εk′)

[
U (1)k−k′

(
Λ̂
(1)
k,k′ ρ̂

>
k′ Λ̂

(1)
k′,kρ̂

<
k − Λ̂

(1)
k,k′ ρ̂

<
k′ Λ̂

(1)
k′,kρ̂

>
k
)

+U (2)k−k′
(
Λ̂
(2)
k,k′ ρ̂

>
k′ Λ̂

(2)
k′,kρ̂

<
k − Λ̂

(2)
k,k′ ρ̂

<
k′ Λ̂

(2)
k′,kρ̂

>
k
)
+ H.c.

]
, (225)
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a b

Fig. 79. Spin relaxation time τ due to various mechanisms in n-type Ga(Mn)As quantum wells which are (a) undoped or (b) n-doped before Mn-
doping as function of Mn concentration x at 30 K (•) and 200 K (�). Red solid curves: the spin relaxation time due to the D’yakonov–Perel’ mechanism
τDP; Green dotted curves: the spin relaxation time due to the Elliott–Yafet mechanism τEY; Brown dashed curves: the spin relaxation time due to the
Bir–Aronov–Pikus mechanism τBAP; Blue chain curve: the spin relaxation time due to the s–d exchange scattering mechanism τsd . The Fermi temperature
of electrons T eF is plotted as a black curve with 4 (the scale of T

e
F is on the right hand side of the frame) and T

e
F = T for both T = 30 and 200 K

cases are plotted as black dashed curves. The scale of the electron density from Mn donors NMne is also plotted on the top of the frame. From Jiang et al.
[111].

where ni = NSMn + 4N
I
Mn + ni0 with N

S
Mn, N

I
Mn and ni0 representing the densities of substitutional Mn, interstitial Mn

and non-magnetic impurities, respectively. U (1)k−k′ =
λ2c
4

∑
qz V

2
k−k′,qz

|I(iqz)|2q2z and U
(2)
k−k′ = −λ

2
c
∑
qz V

2
k−k′,qz

|I(iqz)|2.

Here λc =
η(1−η/2)

3mcEg (1−η/3)
with η = ∆SO

∆SO+Eg
. Eg and ∆SO are the band-gap and the spin–orbit splitting of the valence band,

respectively [3]. The spin–flip matrices are given by Λ̂(1)k′,k = [(k+ k′, 0)× σ̂]z and Λ̂
(2)
k,k′ = [(k, 0)× (k

′, 0)] · σ̂. It is noted

that Λ̂(1)k′,k and Λ̂
(2)
k′,k contribute to the out-of-plane and in-plane spin relaxations, respectively. They are generally different

and therefore the spin relaxation due to the Elliott–Yafet mechanism in quantum wells is anisotropic. The Elliott–Yafet
mechanism can be incorporated into other scatterings similarly [110].
By solving the kinetic spin Bloch equations, Jiang et al. [111] studied the spin relaxation in both n- and p-type Ga(Mn)As

quantum wells. For an n-type sample, the total electron density is given by Ne = N ie + N
Mn
e + Nex with N

Mn
e , N

i
e and Nex

representing the densities from Mn donors, other donors and photo excitation, respectively. The calculated spin relaxation
times due to various mechanisms are shown as a function of Mn concentration in n-type samples with N ie = 0 (a)
and N ie = 1011 cm−2 (b) respectively (Fig. 79). It is interesting to see that even for the strong s–d exchange coupling
taken in the calculation, the spin relaxation due to the s–d exchange coupling is still much weaker than that due to the
D’yakonov–Perel’ mechanism. Also the Bir–Aronov–Pikus and Elliott–Yafetmechanisms are irrelevant to the spin relaxation.
The spin relaxation is solely determined by the D’yakonov–Perel’ mechanism. Moreover, they predicted a peak in the Mn
concentration dependence of the spin relaxation time. The physics leading to the peak is the same as the carrier-density
dependence of the spin relaxation time in the n-type GaAs quantum wells addressed in Section 5.4.2, with the peak being
around the electron Fermi temperature T eF .
For p-type Ga(Mn)As quantum wells, both substitutional and interstitial Mn ions exist in the system. For simplicity, all

the holes are assumed free. Due to the presence of interstitial Mn ions, the ratio of the hole density Nh to the Mn density
NMn was obtained by fitting the experimental data in Ref. [233], as shown in Fig. 80. The electron spin relaxations due to
various mechanisms were calculated as a function of Mn concentration at different temperatures by Jiang et al. [111], as
shown in Fig. 81. Unlike the case of n-type samples, due to the presence of a large hole density at high Mn concentration,
the Bir–Aronov–Pikus and s–d exchange scattering mechanisms can be important. At very low temperature (Fig. 81(a)),
due to the Pauli blocking addressed in Section 5.4.6, the Bir–Aronov–Pikus mechanism is negligible. The spin relaxation
is determined by the D’yakonov–Perel’ mechanism at low Mn concentration and the s–d exchange scattering mechanism
at high Mn concentration. At medium temperature (Fig. 81(b)), both the Bir–Aronov–Pikus and s–d exchange scattering
mechanisms determine the spin relaxation at high Mn concentrations. At high temperature (Fig. 81(c)), the spin relaxation
is determined by the Bir–Aronov–Pikus mechanism. As the D’yakonov–Perel’ mechanism determines the spin relaxation
at low Mn concentrations, the spin relaxation time limited by it increases with increasing Mn concentration (increasing
electron–impurity scattering).Moreover, both the Bir–Aronov–Pikus and s–d exchange scatteringmechanisms increasewith
increasing Mn density. As a result, there is a peak in the Mn density dependence of the electron spin relaxation time at any
temperature (except for the extremely low temperature where the localization becomes important).
The temperature, photo-excitation density and magnetic field dependences of the spin relaxation in paramagnetic

Ga(Mn)As quantum wells have also been investigated in detail in Ref. [111].
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Fig. 80. Ratio of the hole density to the Mn density Nh/NMn vs. the Mn concentration x in p-type Ga(Mn)As quantum wells. The black dots represent the
experimental data. The red solid curve is the fitted one. The hole density Nh is also plotted (the blue dashed curve). Note that the scale of Nh is on the right
hand side of the frame. From Jiang et al. [111].

a b c

Fig. 81. Spin relaxation time τ due to various mechanisms and the total spin relaxation time in p-type Ga(Mn)As quantum wells against the Mn
concentration x at (a) T = 5, (b) 50 and (c) 200 K. The scale of NMn is also plotted on the top of the frame. From Jiang et al. [111].

5.4.10. Hole spin dynamics in (001) strained asymmetric Si/SiGe and Ge/SiGe quantum wells
Among different kinds of hosts for spintronics devices, silicon appears to be a particularly promising one, partly due

to the high possibility of eliminating hyperfine couplings by isotropic purification and well developed microfabrication
technology [874]. Many investigations have been carried out to understand the electron spin relaxation in bulk silicon
and its nanostructures [150,290,295,763,771,776]. The study of hole spin relaxation in silicon is very limited. Glavin and
Kim presented a first calculation of the spin relaxation of two-dimensional holes in strained asymmetric Si/SiGe (Ge/SiGe)
quantum wells [298] by means of the single-particle approximation where the important effect of the Coulomb scattering
to the spin relaxation is absent. More seriously, as pointed out by Zhang and Wu [299], the nondegenerate perturbation
method with only the lowest unperturbed subband of each hole state considered in the calculation of the subband energy
spectrum and envelope functions by Glavin and Kim [298] is inadequate in converging the calculation. However, whenmore
unperturbed subbands are included as basis functions, the nondegenerate perturbation method even fails. By applying the
exact diagonalizing method to obtain the energy spectrum and envelope functions, Zhang and Wu studied the hole spin
relaxation in (001) strained asymmetric Si/Si0.7Ge0.3 (Ge/Si0.3Ge0.7) quantum wells, in the situation with only the lowest
hole subband being relevant, by means of the kinetic spin Bloch equation approach [299].
The structures of SiO2/Si/Si0.7Ge0.3 and SiO2/Ge/Si0.3Ge0.7 (001) quantum wells are illustrated in Fig. 82, with the

confining potential V (z) approximated by a triangular potential due to the large gate voltage. The subband envelope
functions are obtained by solving the eigenequation of the 6 × 6 Luttinger Hamiltonian including the heavy hole, light
hole and split-off hole states [122,246,875] under the confinement V (z), with sufficient basis functions included [299]. Due
to the biaxial strain [122,246,875,876], the lowest subband in Si/SiGe quantumwells is light hole-like, which is an admixture
of the light hole and split-off hole states, whereas that in Ge/SiGe quantum wells is a pure heavy hole state. By using the
Löwdin partition method [113], the effective Hamiltonian of the lowest hole subband in Si/SiGe (Ge/SiGe) quantum wells
can be written as [299]

H(l,h)eff = −
k2

2m(l,h)
−
1
2
σ ·Ω(l,h)(kx, ky), (226)
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a

b

Fig. 82. Schematics of the SiO2/Si/Si0.7Ge0.3 quantum well structure (a) and SiO2/Ge/Si0.3Ge0.7 quantum well structure (b). Two vertical dashed lines
in each figure represent the two interfaces. The solid curves represent the confining potential V (z) with electric field E = 300 kV/cm. The valence band
discontinuities at the Si/Si0.7Ge0.3 and Ge/Si0.3Ge0.7 interfaces are neglected in the triangular potential approximation. The chain curves with their scale
on the right hand side of the frame respectively represent the lowest light hole and heavy hole distributions in Si/Si0.7Ge0.3 and Ge/Si0.3Ge0.7 quantum
wells along the z-axis. From Zhang and Wu [299].

where k is the in-plane momentum, m(l) [m(h)] is the in-plane effective mass of the lowest light (heavy) hole subband in
Si/SiGe (Ge/SiGe) quantum wells, σ are the Pauli matrices, andΩ(l) [�(h)] is the Rashba term of the lowest light hole (heavy
hole) subband in Si/SiGe (Ge/SiGe) quantumwells.Ω(l) has both the linear and cubic dependences on momentum, whereas
Ω(h) has only the cubic dependence. For the lowest light hole subband in Si/SiGe quantum wells,

m(l) = m0[A− B(λ
(l1l1)
00 /2−

√
2λ(l1l2)00 )]−1, (227)

�(l) = �
(l)
1 + �

(l)
3 , (228)

Ω
(l)
1x,y = Ξkx,y, (229)

Ω
(l)
3x = ΠBkx(k

2
x + k

2
y)+Θ[3Bkx(k

2
x − k

2
y)+ 2

√
3(3B2 + C2)k2ykx], (230)

Ω
(l)
3y = ΠBky(k

2
x + k

2
y)+Θ[3Bky(k

2
y − k

2
x)+ 2

√
3(3B2 + C2)k2xky], (231)

with

Ξ =
h̄
m0

√
6(3B2 + C2)κ (l1l2)00 , (232)

Π = −
h̄3

2m20

√
3(3B2 + C2)

2

∑
α=l,s

∞∑
n=0

(1− δlαδ0n)
κ
(l1α2)
0n − κ

(l2α1)
0n

E(l)0 − E
(α)
n

[
√
2(λ(l1α2)0n + λ

(l2α1)
0n )− λ

(l1α1)
0n ], (233)

Θ = −
h̄3

2m20

√
3B2 + C2

3

∞∑
n=0

κ
(l1h)
0n −

1
√
2
κ
(l2h)
0n

E(l)0 − E
(h)
n

(
√
2λ(l2h)0n + λ

(l1h)
0n ). (234)

For the lowest heavy hole subband in Ge/SiGe quantum wells,

m(h) = m0(A+ B/2)−1, (235)

�(h) = �
(h)
3 , (236)

Ω
(h)
3x = Λ[3Bkx(k

2
x − k

2
y)− 2

√
3(3B2 + C2)k2ykx], (237)

Ω
(h)
3y = Λ[3Bky(k

2
x − k

2
y)+ 2

√
3(3B2 + C2)k2xky], (238)

with

Λ = −
h̄3

2m20

√
3B2 + C2

3

∑
α=l,s

∞∑
n=0

1
√
2
κ
(hα2)
0n − κ

(hα1)
0n

E(h)0 − E
(α)
n

(
√
2λ(hα2)0n + λ

(hα1)
0n ). (239)
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Fig. 83. Spin–orbit coupling coefficients h̄2Ξ ,
h̄
2Π and

h̄
2Θ for the lowest light hole subband in Si/SiGe quantum wells and

h̄
2Λ for the lowest heavy hole

subband in Ge/SiGe quantum wells against the electric field E. The scale of h̄2Ξ is on the right hand side of the frame. From Zhang and Wu [299].

a b

Fig. 84. (a) Spin relaxation time τ against temperature T with different hole densities. (b) Spin relaxation time τ against hole density Nh with different
temperatures. For both cases the impurity density Ni = 0 and the electric field E = 300 kV/cm. From Zhang and Wu [299].

Here A, B and C are the valence band parameters, which relate to the Luttinger parameters γ1, γ2 and γ3 through A = γ1,
B = 2γ2 and

√
3B2 + C2 = 2

√
3γ3. E

(α)
n (α = h, l, s) are the subband energy levels. λ(αβ)nn′ and κ

(αβ)

nn′ are defined as

λ
(αβ)

nn′ =
∫
+∞

−∞
dzχ (α)n (z)χ (β)n′ (z) and κ

(αβ)

nn′ =
∫
+∞

−∞
dzχ (α)n (z)

dχ (β)
n′
(z)

dz , with χ (α)n the envelope functions [299]. The calculated
spin–orbit coupling coefficients of the lowest subband of Si/SiGe quantum wells (Ξ ,Π andΘ) and Ge/SiGe quantum wells
(Λ) are given in Fig. 83.
The hole spin relaxation time is calculated by solving the kinetic spin Bloch equations, with the hole-deformation

optical/acoustic phonon [877], hole-impurity and hole–hole Coulomb scatterings explicitly included [299]. The typical
results are shown in Fig. 84 for Si/SiGe quantum wells, where a peak appears in both the temperature dependence (located
around the hole Fermi temperature) and the density dependence (located around the crossover from the degenerate to
the nondegenerate regimes) of hole spin relaxation time. It is also shown that the hole–hole Coulomb scattering plays
an essential role in the spin relaxation. As shown in Fig. 85, by switching off the hole–hole Coulomb scattering, the spin
relaxation times differ dramatically. Similar behavior also happens in Ge/SiGe quantum wells, except that the peak in the
temperature dependence of the hole spin relaxation time is located around half of the hole Fermi temperature. The shift
of the peak to the lower temperature is suggested to be due to the cubic momentum dependence of the Rashba term
(Eqs. (236)–(238)), in contrast to the linear one which is important in the case of Si/SiGe quantum wells. The effects of
impurity and gate voltage on the hole spin relaxation are discussed in detail in Ref. [299].
Finally, it is noted that unlike holes in GaAs quantum wells where the system is in the weak scattering limit [363], holes

in Si/SiGe quantumwells are generally in the strong scattering limit thanks to the strong hole–hole Coulomb scattering and
weak Rashba spin–orbit coupling. However, holes in Ge/SiGe quantum wells can be in the weak scattering limit with high
density at low temperature due to the larger Rashba term [299]. In any case, adding impurities can shift the system from
the weak scattering limit to the strong one [299,363].
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Fig. 85. Spin relaxation time τ against hole density Nh with different scatterings included in a Si/SiGe quantum well. T = 300 K and E = 300 kV/cm.
Solid curve: with the hole–hole Coulomb (h-h), the hole–optical phonon (h-op) and the hole–acoustic phonon (h-ac) scatterings. Dashed curve: same as
the solid curve with the additional hole–impurity scattering (Ni = 1010 cm−2) included; Chain curve: with the h-op and h-ac scatterings; Dotted curve:
same as the chain curve with the additional hole–impurity scattering (Ni = 5× 108 cm−2) included. From Zhang and Wu [299].

Fig. 86. ZnO (0001) quantum wells: (a) Spin relaxation time τ vs. temperature T at different impurity densities. The dashed curve is obtained from the
calculation of excluding the electron–phonon scattering. (b) and (c): Spin relaxation time vs. the electron density with different impurity densities and
temperatures (20 K and 300 K respectively). N: Ni/Ne = 0; �: Ni/Ne = 0.1; �: Ni/Ne = 1. From Lü and Cheng [613].

5.4.11. Spin relaxation and dephasing in n-type wurtzite ZnO (0001) quantum wells
While there are many studies on the spin dynamics in cubic zinc-blende semiconductors, much attention has also been

devoted to the spin properties of zinc oxide (ZnO) with wurtzite structures [556,559,568,878–882]. Harmon et al. calculated
the spin relaxation time in bulk material in the framework of the single particle approach [559]. Lü and Cheng [613]
applied the kinetic spin Bloch equation approach and calculated the spin relaxation in n-type ZnO (0001) quantum wells
under various conditions, including well width, impurity density and external electric field (hot-electron effect). In the
wurtzite structure, the D’yakonov–Perel’ term comes from the Rashba term due to the intrinsic wurtzite structure inversion
asymmetry�R(k) and the Dresselhaus term�D(k)which can be written as [245]:

gµB�R(k) = αe(ky,−kx, 0), (240)

gµB�nD(k) = γe(b〈k
2
z 〉n − k

2
‖
)(ky,−kx, 0), (241)

with αe, γe and b standing for the spin–orbit coupling coefficients. 〈k2z 〉n = n
2π2/a2 is the subband energy in the hard

wall potential approximation. By taking the lowest two subbands into account, Lü and Cheng solved the kinetic spin Bloch
equations. The typical results are shown in Fig. 86.
Basically the properties of the spin relaxation in ZnO quantum wells are all the same as those in GaAs ones. One still

observes the peak in the temperature and density dependences (the former requires a low impurity density) of the spin
relaxation time. The difference is that for GaAs quantum wells, the temperature peak of the spin relaxation time can only
be observed at low electron density (i.e., low transition temperature) and low impurity density [109,372,604], because the
electron–phonon scattering becomes strong enough to destroy the non-monotonic T dependence of the scattering time
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inducedby the electron–electron scattering. Such a case canbe avoided in ZnOquantumwells, inwhich the electron–phonon
scattering is always prettyweak due to the large optical phonon energies (∼ 800 K). Thus the temperature peak can be found
even for high electron density samples.

5.5. Spin relaxation in quantum wires

In recent years, progress in nanofabrication and growth techniques hasmade it possible to produce high-quality quantum
wires and investigate physics in these nanostructures [883–890]. The energy spectrum of quantum wire systems with a
strong spin–orbit coupling has been studied both experimentally [239,890,891] and theoretically [191,240,241,890,892–
896]. Unlike the quantum wells discussed in Section 5.4, there is additional confinement in quantum wires, and the
remaining free degree of freedom is along the wire growth direction. Therefore, there are stronger subband effects and
alsomarked anisotropy along the growth directions of the wires. Consequently this givesmore choices for themanipulation
of the spin degree of freedom.
For quantumwires, the spin relaxationwas calculated in the framework of the single particle approach [632,698,701,897]

and Monte Carlo simulations [651,697,701,898]. Cheng et al. first applied the kinetic spin Bloch equations to study the spin
dynamics in (001) oriented InAs quantumwires with only the lowest subband involved [899]. Lü et al. studied the influence
of higher subbands and wire orientations on spin relaxation in n-type InAs quantum wires [696]. They reported that the
intersubband Coulomb scattering can make an important contribution to the spin relaxation. Also due to intersubband
scattering in connection with the spin–orbit coupling, spin relaxation in quantum wires can show different characteristics
from those in bulk and in quantum wells. Hole spin relaxation in p-type GaAs quantum wires was also investigated by Lü
et al. from the kinetic spin Bloch equation approach [705].

5.5.1. Electron spin relaxation in n-type InAs quantum wires
By modeling the InAs quantum wire by a rectangular confinement potential of infinite well depth along the x–y plane

(|x| ≤ ax, |y| ≤ ay), one can write the Rashba and Dresselhaus Hamiltonian by replacing kx, k2x , ky, and k
2
y in the bulk Rashba

and Dresselhaus Hamiltonian by 〈ψnx| − i∂/∂x|ψn′x〉, 〈ψnx|(−i∂/∂x)2|ψn′x〉, 〈ψny| − i∂/∂y|ψn′y〉 and 〈ψny|(−i∂/∂y)2|ψn′y〉,

respectively. Here ψnx =
√
2
ax
sin nxπxax and ψny =

√
2
ay
sin nyπyay . The bulk Rashba term reads

HR(k) = γ 6c6c41 σ · k× E = γ 6c6c41 [σx(kyEz − kzEy)+ σy(kzEx − kxEz)+ σz(kxEy − kyEx)]. (242)

For a (100) InAs quantum wire, the x, y and z axes correspond to the [100], [010] and [001] crystallographic directions,
respectively, and the bulk Dresselhaus term can be written as [113]:

H100D = b
6c6c
41 {σx[kx(k

2
y − k

2
z )] + σy[ky(k

2
z − k

2
x)] + σz[kz(k

2
x − k

2
y)]}. (243)

For a (110) quantumwire, the x, y and z directions correspond to the [1̄10], [001] and [110] crystallographic directions, and
one has

H110D = b
6c6c
41 {σx[−

1
2
kz(k2x − k

2
z + 2k

2
y)] + 2σykxkykz + σz[

1
2
kx(k2x − k

2
z − 2k

2
y)]}. (244)

For a (111) quantumwire, the x, y and z directions correspond to the [112̄], [1̄10], and [111] crystallographic directions, and
one has

H111D = b6c6c41

{
σx

[
−

√
2
√
3
kxkykz −

1

2
√
3
k3y −

1

2
√
3
kyk2x +

2
√
3
kyk2z −

√
2
3
k2ykz

]

+ σy

[
1

2
√
3
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1
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√
3
kxk2y −

1
√
6
k2xkz −

1
√
6
kz(k2x + k

2
y)

]
+ σz

[√
3
√
2
k2xky −

1
√
6
k3y −

2
3
kzk2y

]}
. (245)

The kinetic spin Bloch equations read ρ̇k = ρ̇k|coh + ρ̇k|scat, with the coherent terms being

ρ̇k|coh = i
[∑

Q
VQIQρk−qI−Q, ρk

]
− i
[
He(k), ρk

]
. (246)

Here Q ≡ (qx, qy, q). IQ is the form factor. In (s, s′) space [s = (nx, ny, σ )], it reads

IQ,s1,s2 = 〈s1|e
iQ·r
|s2〉 = δσ1,σ2F(m1,m2, qy, ay)F(n1, n2, qx, ax), (247)

where

F(m1,m2, q, a) = 2iaq[eiaq cosπ(m1 −m2)− 1]
[

1
π2(m1 −m2)2 − a2q2

−
1

π2(m1 +m2)2 − a2q2

]
. (248)
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The first term in Eq. (246) is the Coulomb Hartree–Fock term, and the second term comes from the single particle
HamiltonianHe = P2

2m∗ +HR+HD+Vc(r) in (s, s
′) space. For small spin polarization, the contribution from the Hartree–Fock

term in the coherent term is negligible [41,42,44] and the coherent spin dynamics is essentially due to the spin precession
around the effective internal fields described by Eq. (242)-(245).
The scattering contributions to the dynamic equation of the spin-density matrix include the electron-nonmagnetic

impurity, electron–phonon and electron–electron scatterings:

∂ρk

∂t

∣∣∣∣
scat
=
∂ρk

∂t

∣∣∣∣
im
+
∂ρk

∂t

∣∣∣∣
ph
+
∂ρk

∂t

∣∣∣∣
ee
,

∂ρk

∂t

∣∣∣∣
im
= πNi

s1,s2∑
Q
|U iQ|

2δ(Es1,k−q − Es2,k)IQ[(1− ρk−q)Ts1 I−QTs2ρk − ρk−qTs1 I−QTs2(1− ρk)] + H.c.,

∂ρk

∂t

∣∣∣∣
ph
= π

s1,s2∑
Q,λ
|MQ,λ|

2IQ
{
δ(Es1,k−q − Es2,k + ωQ,λ)[(NQ,λ + 1)(1− ρk−q)Ts1 I−QTs2ρk

−NQ,λρk−qTs1 I−QTs2(1− ρk)] + δ(Es1,k−q − Es2,k − ωQ,λ)[NQ,λ(1− ρk−q)Ts1 I−QTs2ρk
− (NQ,λ + 1)ρk−qTs1 I−QTs2(1− ρk)]

}
+ H.c.,

∂ρk

∂t

∣∣∣∣
ee
= π

s1,s2,s3,s4∑
Q,k′

V 2Qδ(Es1,k−q − Es2,k + Es3,k′ − Es4,k′−q)IQ
{
(1− ρk−q)Ts1 I−QTs2ρkTr[(1− ρk′)Ts3 IQTs4ρk′−qI−Q]

− ρk−qTs1 I−QTs2(1− ρk)Tr[ρk′Ts3 IQTs4(1− ρk′−q)I−Q]
}
+ H.c., (249)

in which Ts1,s,s′ = δs1,sδs1,s′ . The statically screened Coulomb potential in the random-phase approximation reads [833]

Vq =
∑
qx,qy

vQ |IQ|2/κ(q), (250)

with the bare Coulomb potential vQ = 4πe2/Q 2 and

κ(q) = 1−
∑
qx,qy

vQ
∑
ks

|IQ,s,s|2
fk+q,s − fk,s
Es,k+q − Es,k

. (251)

In Eq. (249), Ni is the density of impurities, and |U iQ|
2 is the impurity potential. Furthermore, |MQ,λ|

2 and NQ,λ =

[exp(ωQ,λ/kBT ) − 1]−1 are the matrix elements of the electron–phonon interaction and the Bose distribution function,
respectively. The phonon energy spectrum for phonon with mode λ and wavevector Q is denoted by ωQ,λ.
By numerically solving the kinetic spin Bloch equations, Lü et al. [696] investigated the influence of the wire size,

orientation, doping density, and temperature on the spin relaxation time. They also showed that the Coulomb scattering
makes marked contribution to the spin relaxation. Some typical results that the spin relaxation time can be effectively
manipulated in quantum wires with different orientations are summarized in Fig. 87. For (100) quantum wires (Fig. 87(a)),
due to the competition of the longitudinal and transverse effective magnetic fields from the Dresselhaus and Rashba terms
addressed above, the spin relaxation time can be efficiently manipulated by the wire size. Specifically, there is a minimum
in the spin relaxation time when ax = ay, thanks to the cancelation of the longitudinal component from the Dresselhaus
term (〈k2x〉 − 〈k

2
y〉 = 0) when only the lowest subband is populated. For (110) quantum wire with ax = ay = 30 nm, the

electronic population is mainly in the lowest subband. In the presence of an electric field of the form (Ex, Ey, 0), the relevant
Rashba and Dresselhaus terms are

H110R = γ
6c6c
41 (−σxEykz + σyExkz), (252)

H110D = −
1
2
b6c6c41 σxkz(〈k2x〉 − k

2
z + 2〈k

2
y〉). (253)

The effective magnetic field formed by the Dresselhaus term is along the x-direction, which corresponds to the [1̄10]
crystallographic direction, and the effective magnetic field formed by the Rashba term is in the x–y plane. If the direction
of the total effective magnetic field formed by the spin–orbit coupling is tuned to be exactly the direction of the initial spin
polarization, then one can expect an extremely long spin relaxation time, as pointed out in Refs. [597,697]. This is exactly the
case as shown in Fig. 87(b). However, for wider wire size, the spin relaxation time is much smaller due to the contribution of
higher subbands. For (111) quantum wires, again in the case with only the lowest subband being relevant, the Rashba and
Dresselhaus terms read

H111R = γ
6c6c
41 (−σxEykz + σyExkz), (254)

H111D = b
6c6c
41

(
−

√
2
3
σxkz〈k2y〉 −

1
√
6
σykz(〈k2x〉 + 〈k

2
y〉)−

2
3
σzkz〈k2y〉

)
. (255)
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Fig. 87. (a) Spin relaxation time τ vs. the quantum wire width in the y-direction ay for InAs (100) quantum wires at different ax . The electron density is
N = 4× 105 cm−1 and T = 100 K. The arrows mark the densities at which the electron populations in the second and higher subbands are approximately
30%. (b) Spin relaxation time τ vs. Ex for (110) quantum wires at T = 50 K and Ne = 4 × 105 cm−1 . N: ax = ay = 30 nm with an initial spin polarization
along the x-direction; �: ax = ay = 30 nm with an initial spin polarization along the y-direction; •: ax = ay = 50 nm with an initial spin polarization
along the x-direction. (c) Spin relaxation time τ vs. Ex for different wire sizes ax = ay at T = 50 K and Ne = 4 × 105 cm−1 . The growth direction of the
quantum wire is along the [111] crystallographic direction. The solid curves are the results with the initial spin polarization along the z-direction and the
dashed curve is the result with the initial spin polarization along the x-direction. From Lü et al. [696].

Similar to the case of (110) quantum wires, one expects a very long spin relaxation time if the total effective magnetic
field points into the directions of initial spin polarization. For a numerical example of this effect, Lü et al. chose Ey such
that γ 6c6c41 Ey + (

√
2/3)b6c6c41 〈k

2
y〉 = 0 for a small wire width ax = ay = 10 nm, so that the x component of the total

effective magnetic field is zero. For an initial spin polarization along the z-direction, which corresponds to the [111]
crystallographic direction, the spin relaxation time as a function of Ex is shown in Fig. 87(c). It is seen that when ax =
ay = 10 nm, there is a pronounced maximum of the spin relaxation time at Ex = 70 kV/cm, which fulfills the relation
γ 6c6c41 Ex +

1
√
6
b6c6c41 (〈k2x〉 + 〈k

2
y〉) ≈ 0. Consequently, for this field strength, the direction of the total effective magnetic field

is exactly along the direction of the initial spin polarization and this leads to a very long spin relaxation time.

5.5.2. Hole spin relaxation in p-type (001) GaAs quantum wires
Investigation on hole spin relaxation in quantumwires is very limited [698]. Unlike the hole spins in bulk III–Vmaterials

which relax very fast due to the mixture of the heavy-hole and light-hole states, in confined structures such as quantum
wells [363] and quantum dots [491], the degeneracy of the heavy and light hole bands is lifted and the mixture of these
bands can be tuned by strain [491]. Therefore the spin lifetime of holes can be much longer than that in the bulk [363,491].
In quantum wires, a similar situation also happens. Lü et al. performed a systematic investigation on the spin relaxation of
p-type GaAs quantumwires by numerically solving the kinetic spin Bloch equations [705]. They reported that the quantum
wire size influences the spin relaxation time effectively by modulating the energy spectrum and the heavy-hole–light-hole
mixing of wire states.
By considering a p-doped (001) GaAs quantum wire with rectangular confinement and hard wall potential, Lü et al.

first obtained the subband structure by diagonalizing the hole Hamiltonian including the quantum confinement. Here the
light-hole admixture is dominant in the lowest spin-split subband, but the heavy-hole admixture also becomes important
in higher subbands due to the heavy-hole–light-hole mixing. Then they investigated the time evolution of holes by
numerically solving the fully microscopic kinetic spin Bloch equations in the obtained subbands, with all the scatterings,
particularly theCoulomb scattering, explicitly included. They found that the quantumwire size influences the spin relaxation
time effectively because the spin–orbit coupling and the subband structure in quantum wires depend strongly on the
confinement. When the quantum wire size increases, the lowest spin-split subband and the second-lowest spin-split
subband can be very close to each other at an anticrossing point. If the anticrossing is close to the Fermi surface the
contribution from the spin–flip scattering reaches a maximum and correspondingly the spin relaxation time reaches a
minimum. Moreover, they showed that the dependence of the spin relaxation time on confinement size in quantum wires
behaves oppositely to the trend found in quantum wells. It was also found that, when the quantum wire size is very small,
the spin relaxation time can either increase or decrease with increasing hole density, depending on the spin mixing of the
subbands. However, the behavior of holes in quantum wires where the spin relaxation time increases or decreases with
hole density is quite different from the one of light holes in quantum wells with small well width [363]. These features
originate from the subband structure of the quantum wires and the spin mixing which give rise to the spin–flip scattering.
The spin mixing and intersubband scattering are modulated more dramatically in quantum wires by changing the hole
distribution in different subbands. They also investigated the effects of temperature and initial spin polarization, showing
that the intersubband scattering and the Coulomb Hartree–Fock contribution can make a marked contribution to the spin
relaxation.
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By assuming the growth direction of the quantum wire along the z-axis ([001] crystallographic direction), the
Hamiltonian of holes in the basis of spin-3/2 projection (Jz) eigenstates with quantum numbers + 32 , +

1
2 , −

1
2 and −

3
2 can

be written as [113]

Hh =


Hhh S R 0
SĎ Hlh 0 R
RĎ 0 Hlh −S
0 RĎ −SĎ Hhh

+ Hr8v8v + Hb8v8v + Vc(r), (256)

where Vc(r) is the hard-wall confinement potential in x and y directions and

Hhh =
1
2m0
[(γ1 + γ2)[P2x + P

2
y ] + (γ1 − 2γ2)P

2
z ], (257)

Hlh =
1
2m0
[(γ1 − γ2)[P2x + P

2
y ] + (γ1 + 2γ2)P

2
z ], (258)

S = −

√
3γ3
m0

Pz[Px − iPy], R = −

√
3

2m0
{γ2[P2x − P

2
y ] − 2iγ3PxPy}, (259)

Hr8v8v =
γ 8v8v41

h̄
[Jx(PyEz − PzEy)+ Jy(PzEx − PxEz)+ Jz(PxEy − PyEx)], (260)

Hb8v8v =
b8v8v41

h̄3
{Jx[Px(P2y − P

2
z )] + Jy[Py(P

2
z − P

2
x )] + Jz[Pz(P

2
x − P

2
y )]}. (261)

In these equations, m0 denotes the free electron mass, γ1, γ2 and γ3 are the Luttinger parameters, E is the electric field
and Ji are spin-3/2 angular momentummatrices [122]. Hr8v8v is the spin–orbit coupling arising from the structure inversion
asymmetry andHb8v8v is the spin–orbit coupling from the bulk inversion asymmetry. As shown in Ref. [705], these two terms
turn out to be one or two orders of magnitude smaller than the intrinsic spin–orbit coupling from the four-band Luttinger-
Kohn Hamiltonian (the first term in Eq. (256)). Moreover, from the first term in Eq. (256), one can see that the light hole
spin-up states can be directly mixed with the heavy hole states by S and R, but the mixing between light hole spin-up states
and light hole spin-down states has to be mediated by the heavy hole states. All the mixing is related to the confinement.
When the confinement decreases, the mixing increases due to the decrease of the energy gap between the light hole and
heavy hole states.

The kinetic spin Bloch equations ρ̇k + ρ̇k

∣∣∣∣
coh
+ρ̇k

∣∣∣∣
scat
= 0 can be written in the collinear spin space which is constructed

by basis {s}, with {s} obtained from the eigenfunctions of the diagonal part of Hh(k). |s〉 = |m, n〉|σ 〉 with 〈r|m, n〉 =
2
√axay

sin(mπyay ) sin(
nπx
ax
)eikz and |σ 〉 standing for the eigenstates of Jz . Then the matrix elements in the collinear spin space

ρck,s1,s2 are written as ρ
c
k,s1,s2

= 〈s1|ρk|s2〉. Here the superscript ‘‘c ’’ denotes the quantum number distinguishing states in
the collinear spin space. One can also project ρk in the ‘‘helix’’ spin space which is constructed by basis {η}with η being the
eigenfunctions of Hh(k):

Hh(k)|η〉 = Eη,k|η〉. (262)

This basis function is amixture of light-hole and heavy-hole states and is k dependent. Then thematrix elements in the helix
spin space ρhk,η,η′ can be written as ρ

h
k,η,η′ = 〈η|ρk|η

′
〉, with the superscript ‘‘h’’ denoting the helix spin space. The density

matrix in the helix spin space can be transformed from that in the collinear one by a unitary transformation: ρhk = U
Ď
kρ
c
kUk,

where Uk(i, α) = ηiα(k)with η
i
α(k) being the ith element of the αth eigenvector after the diagonalization of Hh(k).

In helix spin space, the coherent terms read

ρ̇hk |coh = i
[∑

Q
VQU

Ď
k IQUk−qρ

h
k−qU

Ď
k−qI−QUk, ρ

h
k

]
− i
[
UĎ
kHh(k)Uk, ρ

h
k

]
, (263)

where IQ is the form factor in the collinear spin space with wave vector Q ≡ (qx, qy, q). The first term in Eq. (263) is
the Coulomb Hartree–Fock term and the second term is the contribution from the intrinsic spin–orbit coupling from the
Luttinger-Kohn Hamiltonian. IQ can be written as IQ,s1,s2 = 〈s1|e

iQ·r
|s2〉 = δσ1,σ2F(m1,m2, qy, ay)F(n1, n2, qx, ax), with

F(m1,m2, q, a) being expressed as Eq. (248). For small spin polarization, the contribution from the Hartree–Fock term in
the coherent term is negligible [41,42,44] and the spin precession is determined by the spin–orbit coupling, ρ̇hk,η,η′ |coh =
−iρhk,η,η′(Eη,k − Eη′,k), which is proportional to the energy gap between η and η

′ subbands.
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Fig. 88. Typical energy spectra of holes in GaAs (001) quantum wires for (a) ax = 6 nm; (b) ax = 8 nm; (c) ax = 10 nm; (d) ax = 12 nm; (e) ax = 15 nm;
and (f) ax = 20 nm. ay = 10 nm. 〈E〉 at T = 20 K is also plotted: solid line for Nh = 4 × 105 cm−1 and dashed line for Nh = 2 × 106 cm−1 . From Lü
et al. [705].

The scattering terms include the hole–nonmagnetic-impurity, hole–phonon and hole–hole Coulomb scatterings. In the
helix spin space, the scattering terms are given by

ρ̇hk |scat = πNi
∑

Q,η1,η2

|U iQ|
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h
k−q)Tk−q,η1U

Ď
k−qI−QUkTk,η2ρ

h
k
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h
k )]}
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Ď
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Ď
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Ď
k−qI−QUk] − ρ
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k−qTk−q,η1U

Ď
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Ď
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h
k′−q)U

Ď
k−qI−QUk]} + H.c., (264)

in which Tk,η(i, j) = δηiδηj. VQ in Eq. (264) reads VQ = 4πe2/[κ0(q2 + q2‖ + κ
2)], with κ0 representing the static dielectric

constant and κ2 = 4πe2Nh/(kBTκ0a2) standing for the Debye screening constant. Ni in Eq. (264) is the impurity density
and |U iQ|

2
= {4πZie2/[κ0(q2 + q2‖ + κ2)]}2 is the impurity potential with Zi standing for the charge number of the

impurity. |MQ,λ|
2 and NQ,λ = [exp(ωQ,λ/kBT ) − 1]−1 are the matrix element of the hole–phonon interaction and the

Bose distribution function with phonon energy spectrum ωQ,λ at phonon mode λ and wave vector Q, respectively. Here
the hole–phonon scattering includes the hole–longitudinal optical-phonon and hole–acoustic-phonon scatterings with the
explicit expressions of |MQ,λ|

2 can be found in Refs. [44,372,844]. It is noted that the energy spectrum Eη,k in the scattering
term contains the spin–orbit coupling which cannot be ignored due to the strong coupling. By solving the kinetic spin Bloch
equations, one obtains hole spin relaxation.
The typical subband structure is shown in Fig. 88 for different confinements. Each subband is denoted as l+ (l−) if the

dominant spin component is the spin-up (-down) state. One can see from Fig. 88 that 1+ and 1− subbands are very close to
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eachother, so are the subbands 2±. The spin-splitting between them ismainly causedby the spin–orbit coupling arising from
the bulk inversion asymmetry, because that the spin-splitting caused by the spin–orbit coupling arising from the structure
inversion asymmetry is three orders of magnitude smaller than the diagonal terms in Eq. (256) and can not be seen in
Fig. 88. The spin-splitting caused by the bulk inversion asymmetry is proportional to (P2x − P

2
y ), which disappears when

the confinement in x and y directions are symmetrical. Therefore, l± are almost degenerate when ax = ay = 10 nm. If
one excludes the spin–orbit coupling from the bulk inversion asymmetry and structure inversion asymmetry, l± are always
degenerate because of the Kramers degeneracy. One also observes that when ax gets larger, the subbands are closer to each
other. Especially, in the case of ax = ay = 10 nm, there are anticrossing points due to the heavy-hole–light-hole mixing in
the Luttinger Hamiltonian.When ax keeps on increasing, the anticrossing point at small k between the 1± and 2± gradually
disappears. However, at large k region, the lowest two subbands become very close to each other. These will lead to a
significant effect on spin relaxation time. In Fig. 88, a quantity 〈E〉, with

〈E〉 =

∑
l

∫
+∞

−∞
dk(ρhk,l+,l+ − ρ

h
k,l−,l−)(El+,k + El−,k)

2
∑
l

∫
+∞

−∞
dk(ρhk,l+,l+ − ρ

h
k,l−,l−)

, (265)

is introduced to represent the energy region where spin precession and relaxation between the+ and− bands mainly take
place. It is seen from the figure that for Nh = 4×105 cm−1 and 2×106 cm−1, 〈E〉 only intersects with 1± and 2± subbands.
It is also seen that the dominant spin component in the 1+ (1−) state is the spin-up (spin-down) light-hole state.
There are three mechanisms leading to spin relaxation. First, the spin–flip scattering, which includes the scattering

between l+ and l− subbands and the scattering between l+ and l′− subbands (l 6= l′), can cause spin relaxation. The spin
relaxation time decreases with the spin–flip scattering, with the scattering strength being proportional to the spin mixing
of the helix subbands. Second, because of the coherent term ρ̇hk |coh, there is a spin precession between different subbands.
The frequency of this spin precession depends on k and this dependence serves as inhomogeneous broadening. As shown in
Refs. [44,332,334,350,569,844], in the presence of the inhomogeneous broadening, even the spin-conserving scattering can
cause irreversible spin relaxation. As a result, the spin-conserving scattering, i.e., the scattering between l+ and l′+ and the
scattering between l− and l′−, can cause spin relaxation along with the inhomogeneous broadening. Finally, the spin–flip
scattering along with the inhomogeneous broadening can also cause an additional spin relaxation.
It is seen from Fig. 88(a) that when Nh = 4× 105 cm−1 and ax = 6 nm, 〈E〉 only intersects with the 1± subbands and is

far away from the 2± subbands. Therefore, holes populate the 1± subbands only. As pointed out before, the coherent term
ρ̇hk,1+,1−|coh is proportional to (E1+,k−E1−,k). As holes are only populating states in the small k regionwhere the spin splitting
between 1± is negligible, the spin precession between these two states, and thus the inhomogeneous broadening, is very
small. Consequently the main spin-relaxation mechanism is due to the spin–flip scattering, i.e., the scattering between 1±
subbands.
In the case of larger ax and Nh, as shown in Fig. 88(c)–(f), where 〈E〉 is close to or intersects with the 2± subbands,

holes populate both the 1± and 2± subbands. The spin–flip scattering here includes the scattering between 1± states,
the scattering between 2± states and the spin–flip scattering between 1± and 2± subbands. This spin–flip scattering
is still found to be the main spin relaxation mechanism. Besides, differing from the case of Fig. 2(a), the coherent term
ρ̇hk,1±,2±|coh is proportional to the energy gap between 1± and 2±, and it is much larger than ρ̇

h
k,1+,1−|coh. As a result, there is

a much stronger spin precession between 1± and 2± subbands with a frequency depending on k, and the inhomogeneous
broadening caused by this precession, along with both the spin-conserving scattering and the spin–flip scattering, canmake
a considerable contribution to the spin relaxation.
A typical hole spin relaxation time as a function of wire width is given in Fig. 89 at different temperatures and hole

densities. The underlying physics can be well understood from the corresponding subband mixing in Fig. 88. Similarly the
temperature, hole density, and spin polarization dependences of spin relaxation were also discussed in detail in Ref. [705].

5.6. Spin relaxation in bulk III–V semiconductors

The study of spin dynamics in bulk III–V semiconductors has a long history. The theoretical study of spin relaxation
and the systematic experimental investigation started as early as 1970s [3]. The early studies have been reviewed
comprehensively in the book ‘‘Optical Orientation’’ [3]. In the past decade, the topic gained renewed interest in the context of
semiconductor spintronics [576]. Differing from early experimental studies which mainly focus on electron spin relaxation
in p-type bulk III–V semiconductors, experimental investigations in the past decademainly focus onn-type and intrinsic bulk
III–V semiconductors [21]. Theoretically, Song and Kim systematically calculated the density and temperature dependences
of electron spin relaxation time in bulk n-type and p-type GaAs, InAs, GaSb and InSb by including the D’yakonov–Perel’,
Elliott–Yafet and Bir–Aronov–Pikus mechanisms [108]. However, their approach was based on the approximate formulae
in the book ‘‘Optical Orientation’’ [3], where the momentum scattering time is calculated via the approximate formulae for
mobility [108]. A key mistake is that they used the formulae that can only be used in the nondegenerate regime. This makes
their results in the low-temperature and/or high-density regime questionable. Moreover, the single-particle approach they
used limits the validity of their results. Other theoretical investigations have similar problems [209,390,559,577,578,583].
Therefore a systematic many-body investigation from the fully microscopic kinetic spin Bloch equation approach is needed.
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Fig. 89. Spin relaxation time τ vs. the quantum wire width in the x-direction ax for (a) Nh = 4 × 105 cm−1 at different temperatures and (b)
Nh = 2× 106 cm−1 at T = 20 K. ay = 10 nm. From Lü et al. [705].

a b c

Fig. 90. (a) n-GaAs. Spin relaxation times τ from the experiment in Ref. [4] (•) and from the calculation via the kinetic spin Bloch equation approach with
only the D’yakonov–Perel’ mechanism (solid curve) as well as that with only the Elliott–Yafet mechanism (dashed curve). ne = 1016 cm−3 , ni = ne and
Nex = 1014 cm−3 . γD = 8.2 eV · Å

3 . (b) p-GaAs. Spin relaxation times τ from the experiment in Ref. [586] (•) and from the calculation via the kinetic
spin Bloch equation approach (solid curve). nh = 6 × 1016 cm−3 , ni = nh and T = 100 K. γD = 8.2 eV · Å

3 . (c) p-GaAs. Spin relaxation times τ from
the experiment in Ref. [900] (•) and from the calculation via the kinetic spin Bloch equation approach (solid curve). nh = 1.6 × 1016 cm−3 , ni = nh and
Nex = 1014 cm−3 . γD = 10 eV · Å

3 . From Jiang and Wu [110].

In this subsection, we review the comprehensive study on the topic via the fully microscopic kinetic spin Bloch equation
approach by Jiang and Wu [110] where many important predictions and results that can not be achieved via the single-
particle approach were obtained.78
The system considered is the bulk III–V semiconductors, where the spin interactions have been introduced in Section 2.

Specifically, the spin–orbit coupling consists of the Dresselhaus term,

�(k) = 2γD[kx(k2y − k
2
z ), ky(k

2
z − k

2
x), kz(k

2
x − k

2
y)] (266)

and the strain-induced termwhich is linear in k. The electron–hole exchange interaction is given by Eq. (37) which consists
of both the short-range interaction (see Eq. (33)) and the long-range one (see Eq. (34)). The Elliott–Yafet mechanism is
included in the electron–impurity, electron–phonon, electron–electron and electron–hole scatterings in the kinetic spin
Bloch equations [110].

5.6.1. Comparison with experiments
Jiang and Wu compared their calculation via the kinetic spin Bloch equation approach [110] with experimental results

measured in GaAs in Refs. [4,586,900]. The results are presented in Fig. 90(a)-(c), where the calculated spin lifetimes are
plotted as solid curves and the experimental results as red dots. It is seen that the calculation agrees quite well with
experimental data for both n- and p-type GaAs in wide temperature and density regimes. The deviation in the low-
temperature regime (T < 20 K) in Fig. 90(a) is due to the rise of electron localization. Good quantitative agreement with
experimental data for intrinsic GaAs at room temperature was also achieved by Jiang and Wu in Ref. [589]. In those

78 A review of the experimental studies and the single-particle theories on electron spin relaxation in bulk n-type and intrinsic III–V semiconductors
in metallic regime is presented in Sections 4.2.1 and 4.2.2, respectively. Studies on electron spin relaxation in bulk p-type III–V semiconductors were
reviewed in the book ‘‘Optical Orientation’’ [117].
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a b

Fig. 91. Ratio of the Elliott–Yafet spin relaxation time τEY to the D’yakonov–Perel’ one τDP for (a) n-InSb (b) n-InAs and n-GaAs as a function of temperature
for various electron densities. In (b): ne = 1016 cm−3 (curve with •), 2×1017 cm−3 (curve with�), 1018 cm−3 (curve with4) for InAs, and ne = 1016 cm−3
(curve with O) for GaAs. From Jiang and Wu [110].

Table 2
TheΘ factor for III–V semiconductors. From Jiang and Wu [110].

GaAs GaSb InAs InSb InP

Θ (eV) 2.7× 10−2 0.12 2.0× 10−3 9.2× 10−4 0.27

calculations, all the material parameters are taken from the standard handbook of Landolt-Börnstein [204]. The only
free parameter is the Dresselhaus spin–orbit coupling constant γD, which has not been unambiguously determined by
experiment or theory. Nevertheless the parameter γD for GaAs used in the calculation is close to the value from recent ab
initio calculationwith theGWapproximation (γD = 8.5 eV·Å

3) [139] and that from the recent fitting of themagnetotransport
in chaotic GaAs quantum dots (γD = 9 eV · Å

3) [140]. The good agreement with experimental data indicates that the
calculation has achieved quantitative accuracy.

5.6.2. Electron-spin relaxation in n-type bulk III–V semiconductors
Comparison of different spin relaxation mechanisms. In n-type bulk III–V semiconductors at low photo-excitation density,

the Bir–Aronov–Pikus mechanism is irrelevant as the hole density is low. The mechanisms left are the Elliott–Yafet and
D’yakonov–Perel’ mechanisms. Previously, it was believed that the Elliott–Yafetmechanism is important in narrow bandgap
semiconductors, such as InSb and InAs. Jiang and Wu compared the relative efficiency of the two mechanisms at various
conditions for InSb and InAs [110]. The results are shown in Fig. 91. In contrast to previous understanding, they found that
the Elliott–Yafet mechanism is much less efficient than the D’yakonov–Perel’ one in both InSb and InAs. Although the low-
temperature results for the high density cases are absent in Fig. 91, it was found that in such regime the ratio τEY/τDP varies
slowly with temperature [110]. For GaAs, the Elliott–Yafet mechanism is still less important, as indicated by Fig. 91(b).
To give a qualitative picture of the relative importance of the Elliott–Yafet mechanism in other III–V semiconductors,

Jiang and Wu analyzed the problem by using the approximate formulae for the D’yakonov–Perel’ and Elliott–Yafet spin
relaxation time (Eqs. (53) and (62)). From those equations,

τEY

τDP
=
2Q
3A
〈εk〉τ

2
pΘ. (267)

Here Θ = 8γ 2Dm
3
eE
2
g (1 − η/3)

2/[(1 − η/2)2η2]. Q and A are numerical factors around unity. The factor Θ , which is
solely determined by the material parameters, is listed in Table 2 for various III–V semiconductors. The spin–orbit coupling
parameter γD is fitted from experiments (except that γD’s for InP and GaSb are from the k · p calculation in Ref. [138]),
whereas other parameters are from Landolt-Börnstein [204]. One notices from the table that the factorΘ is much smaller for
InAs and InSb than other III–V semiconductors. According to this, the Elliott–Yafet mechanism should be much less efficient
than the D’yakonov–Perel’ one in GaSb and InP. Actually, one notices thatΘ ∝ E2g , which decreases rapidly with decreasing
bandgap. In commonly used III–V semiconductors, InSb has the smallest bandgap. However, even for InSb the Elliott–Yafet
mechanism is much less important than the D’yakonov–Perel’ mechanism in the metallic regime. Therefore, in other III–V
semiconductors, the Elliott–Yafet mechanism is also unimportant.79
Very recently, Litvinenko et al. studied the magnetic field dependence of spin lifetime in n-type InSb and InAs

experimentally [901]. They found in n-InSb that the spin lifetime increases significantly with increasing magnetic field in
the Faraday configuration (magnetic field parallel to spin polarization) (see Fig. 92). As the Elliott–Yafet spin relaxation

79 This is also true for intrinsic III–V semiconductors and in most cases for p-type semiconductors as well as for some II-VI semiconductors (such as CdTe,
see Ref. [590]).
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Fig. 92. Spin lifetime in n-InSb as function ofmagnetic field at 100K. Themagnetic field is parallel to the spin polarization direction (Faraday configuration).
Theoretical dependences of the Elliott–Yafet (dashed curve), D’yakonov–Perel’ and the total (solid curve) spin lifetimes are also shown. Reproduced from
Litvinenko et al. [901].

has little magnetic field dependence, this result implies that the dominant spin relaxation mechanism in n-InSb is the
D’yakonov–Perel’ mechanism at low magnetic field. At high magnetic field the Elliot-Yafet spin relaxation dominates as
the D’yakonov–Perel’ mechanism is strongly suppressed by the longitudinal magnetic field. They found similar results in
n-InAs. These results confirmed the previous prediction by Jiang and Wu that the Elliott–Yafet mechanism is less efficient
than the D’yakonov–Perel’ one in n-type InSb and InAs [110].
The D’yakonov–Perel’ spin relaxation.As both the Bir–Aronov–Pikus and Elliott–Yafetmechanisms are unimportant in bulk

n-type III–V semiconductors in the metallic regime, the only relevant one is the D’yakonov–Perel’ mechanism. Although the
D’yakonov–Perel’ mechanism has been studied for about forty years, the understanding on it in bulk III–V semiconductors
is not yet adequate. For example, in the previous literature, the electron–electron scattering has long been believed to
be irrelevant in bulk III–V semiconductors. Jiang and Wu showed that the electron–electron scattering is important for
spin relaxation in n-GaAs in the nondegenerate regime, except when the electron-longitudinal-optical-phonon dominates
momentum scattering. The same conclusion should also hold for other bulk n-type III–V semiconductors.
The D’yakonov–Perel’ spin relaxation: density dependence. In Fig. 93(a), the spin relaxation time as function of electron

density is plotted for n-GaAs at 40 K. The density of impurity is taken as the same as that of electron, ni = ne. Remarkably, one
notices that the density dependence is non-monotonic with a peak around ne = 1016 cm−3. Previously, the non-monotonic
density dependence of spin lifetimewas observed in low-temperature (T . 5 K) experiments, where the localized electrons
play a crucial role and the electron system is in the insulating regime or around the metal–insulator transition point. Jiang
andWu found, for the first time, that the spin lifetime in themetallic regime is also non-monotonic. Moreover, they pointed
out that it is a universal behavior for all bulk III–V semiconductors at all temperatures where the peak is located at TF ∼ T
with TF being the electron Fermi temperature. From the point of view of spintronic device application, as devices are more
favorable to operate in the metallic regime, this prediction gives the important information that the longest spin lifetime in
the metallic regime is at TF ∼ T . The underlying physics for the non-monotonic density dependence in metallic regime is
elucidated below.
To understand the D’yakonov–Perel’ spin relaxation qualitatively, let us first recall the widely used approximate

formulae [117], τDP ' 1/[〈|�(k)|2 − Ω2z (k)〉τ
∗
p ] where 〈. . .〉 denotes the ensemble average.

80The expression contains
two key factors of the D’yakonov–Perel’ spin relaxation: (i) the inhomogeneous broadening from the k-dependent
transverse spin–orbit field ∼ 〈|�(k)|2 − Ω2z (k)〉; (ii) the momentum scattering time τ

∗
p [including the contributions

of the electron–impurity, electron–phonon, electron–electron and electron–hole (whenever holes exist) scatterings]. The
D’yakonov–Perel’ spin relaxation time increases with increasing momentum scattering rate, but decreases with increasing
inhomogeneous broadening.
To elucidate the underlying physics, Jiang and Wu plotted the spin relaxation times calculated with only the

electron–impurity, electron–electron and electron–phonon scatterings in Fig. 93(a) respectively. It is seen that the spin
relaxation time with only one kind of scattering is smaller than that with all scatterings, which is a consequence of the
motional narrowing nature of the D’yakonov–Perel’ mechanism τs ∝ 1/τp. One notices that the electron–electron scattering
gives an important contribution to spin relaxation in the nondegenerate (low density) regime. Interestingly, both the
electron–electron and electron–impurity scatterings lead to a non-monotonic density dependence of spin relaxation time.
One notices that the electron–phonon scattering is much weaker (the corresponding spin relaxation time is much shorter
as τs ∝ 1/τp) as the temperature is low.

80
〈. . .〉 =

∫
dk (f ↑k −f

↓

k )...∫
dk (f ↑k −f
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a b

Fig. 93. n-GaAs at T = 40 K. (a) spin relaxation time τ as a function of electron density ne (ni = ne) from full calculation (curve with •), from calculation
with only the electron–electron scattering (curve with �), with only the electron–impurity scattering (curve with4), and with only the electron–phonon
scattering (curve with O); (b) spin relaxation time τ as function of electron density ne (ni = ne) for the case with strain-induced spin–orbit coupling (curve
with •: with both the linear- and the cubic-k spin–orbit coupling; curve with 4: with only the linear-k spin–orbit coupling) and the case without strain
(curve with �). From Jiang and Wu [110].

Let us first look at the density dependence of the electron–electron scattering time. In fact, the density and temperature
dependences of the electron–electron scattering time have been widely investigated in spin-unrelated problems (see,
e.g., Ref. [848]). From the previous works [843,848], after some approximation, the asymptotic density and temperature
dependences of the electron–electron scattering time τ eep in the degenerate and nondegenerate regimes are given by,

τ eep ∝ n
2
3
e /T 2 for T � TF , (268)

τ eep ∝ T
3
2 /ne for T � TF . (269)

From the above equations, one notices that the electron–electron scattering times in the nondegenerate and degenerate
regimes have different density dependence. In the nondegenerate (low density) regime, the electron–electron scattering
time decreases with electron density (see Eq. (269)), where the inhomogeneous broadening ∼ 〈|Ω(k)|2 − Ω2z (k)〉 ∝ 〈ε

3
k〉

(εk is the electron kinetic energy) varies slowlywith density as the electrondistribution is close to theBoltzmanndistribution
in nondegenerate regime. The spin relaxation time thus increases with electron density. In the degenerate (high density)
regime, both the electron–electron scattering time (see Eq. (268)) and the inhomogeneous broadening increasewith electron
density. Therefore, the spin relaxation time τs ' 1/[〈|�(k)|2 −Ω2z (k)〉τ

ee
p ] decreases with electron density.

For spin relaxation associatedwith the electron–impurity scattering, the scenario is similar: In the nondegenerate regime,
the decrease of the electron–impurity scattering timewith electron density (1/τ eip ∝ ni = ne) leads to the increase of the spin
relaxation time with increasing electron density. In the degenerate regime, the inhomogeneous broadening increases with
increasing electron density, as 〈|�(k)|2−Ω2z (k)〉 ∝ k

6
F ∝ n

2
e . On the other hand, the electron–impurity scattering time varies

slowly with electron density because 1/τ eip ∼ niV
2
kF
kF ∼ nekF/k4F ∝ n

0
e . Consequently, the spin relaxation time decreases

with increasing electron density. For spin relaxation related to the electron–phonon scattering, the situation, however, is
different: In the nondegenerate regime both the inhomogeneous broadening and the electron–phonon scattering rate vary
slowly with electron density, as electron distribution is close to the Boltzmann distribution. In the degenerate regime, the
increase of the inhomogeneous broadening is faster than the variation of the electron–phonon scattering, which hence leads
to the decrease of spin relaxation time with increasing electron density.
In summary, the electron density dependence of spin relaxation time is non-monotonic, as the momentum scattering

time and the inhomogeneous broadening have different qualitative density dependences in the nondegenerate and
degenerate regimes. The spin relaxation time increases (decreases) in the nondegenerate (degenerate) regime with
increasing electron density. A peak hence locates in the crossover regime, where TF is around T . Such a scenario should
hold for all the III–V semiconductors at all temperatures and the non-monotonic density dependence is thus a universal
behavior.81 Furthermore, in Fig. 93(b), Jiang andWu showed that the non-monotonic density dependence of spin relaxation
time also exists even when the spin–orbit coupling is dominated by the linear-k term.82 Subsequently, similar behavior was
found in two-dimensional systems [111,299,613], where the underlying physics is similar. The predicted peak was later
observed by Krauss et al. [563] (see, also [564]).

81 The non-monotonic density dependence should also exist in bulk II-VI semiconductorswith zinc-blende structureswhich have a similar band structure
to III–VI semiconductors.
82 From this point, the non-monotonic density dependence should also exist in bulk wurtzite semiconductors with bulk inversion asymmetry, such as
GaN, AlN and ZnO.
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a b c

Fig. 94. Spin relaxation time τ for intrinsic GaAs with excitation density Nex = 1017 cm−3 . The initial spin polarization is P = 50%. (a) spin relaxation time
τ due to the Bir–Aronov–Pikus (BAP) and D’yakonov–Perel’ (DP) mechanisms as a function of temperature. (b) The Bir–Aronov–Pikus spin relaxation time
calculated from Eq. (270) (dotted curve with4), from the kinetic spin Bloch equation approachwith both long-range and short-range exchange scatterings
(solid curve with •) as well as from the kinetic spin Bloch equation approach with only the short-range exchange scattering (solid curve with �). (c) The
D’yakonov–Perel’ spin relaxation time from full calculation (solid curve with •), from the calculation without the Coulomb Hartree–Fock term (dashed
curve with �), and from the calculation without the electron–hole Coulomb scattering (dotted curve with4). From Jiang and Wu [110].

5.6.3. Electron-spin relaxation in intrinsic bulk III–V semiconductors
In intrinsic semiconductors, the carriers are generated by photo-excitation where the electron density is equal to the

hole density ne = nh = Nex (Nex denotes the excitation density). As the impurity density is very low (one can take
ni = 0), the carrier-carrier scattering is dominant except at high temperature where the electron-longitudinal-optical-
phonon scattering becomes more important. Intrinsic bulk semiconductors thus offer a good platform to study the many-
body effect to electron spin relaxation.
Comparison of different mechanisms. As both the Bir–Aronov–Pikus and D’yakonov–Perel’ mechanisms contribute to

electron spin relaxation, the relative efficiency of the Bir–Aronov–Pikus and D’yakonov–Perel’ mechanisms should be
compared. In Fig. 94(a) the Bir–Aronov–Pikus and D’yakonov–Perel’ spin relaxation times as function of temperature
are plotted. It is noted that the Bir–Aronov–Pikus spin relaxation time is over one order of magnitude larger than
the D’yakonov–Perel’ one, which indicates that the Bir–Aronov–Pikus mechanism is much less efficient than the
D’yakonov–Perel’ one in intrinsic bulk III–V semiconductors. Systematic calculation for various temperatures and excitation
densities confirms that the Bir–Aronov–Pikus mechanism is irrelevant in intrinsic bulk GaAs in the metallic regime. Such a
conclusion also holds for GaSb. Recent experiments arrived at the same conclusion for intrinsic InSb [553]. Therefore, the
Bir–Aronov–Pikus mechanism is unimportant in intrinsic GaAs, GaSb and InSb.
The Bir–Aronov–Pikus spin relaxation: short-range vs. long-range interaction and the Pauli blocking. As to the

Bir–Aronov–Pikus spin relaxation, it should bementioned that the long-range part of the electron–hole exchange interaction
(see Eq. (34)) has always been ignored in the literature [3,21,108,436]. Jiang and Wu examined the relative contribution of
the long-range and short-range interactions to the Bir–Aronov–Pikus spin relaxation. In Fig. 94(b) the Bir–Aronov–Pikus
spin relaxation time calculated with both the long-range and short-range exchange interactions as well as that without the
long-range exchange interaction are plotted. It is seen that the spin relaxation time increases by about three times when
the long-range exchange interaction is removed. This indicates that the long-range interaction is more important than the
short-range one in GaAs and hence can not be neglected. Moreover, in the previous literature, the Bir–Aronov–Pikus spin
relaxation time was calculated via the Fermi Golden rule [3,390],

1
τBAP(k)

= 4π
∑
q,k′
m,m′

δ(εk + ε
h
k′m′ − εk−q − ε

h
k′+qm)|J

(+) k′m′

k′+qm |
2f hk′m′(1− f

h
k′+qm). (270)

As pointed out by Zhou and Wu in the two-dimensional system [109] (see Section 5.4.6), such an approach, which ignores
the Pauli-blocking effect of the electron distribution, fails at low temperature (in the degenerate regime). The spin relaxation
time calculated from Eq. (270) with only the short-range exchange interaction is plotted in Fig. 94(b). One notices that the
results from Eq. (270) indeed deviate from the exact results via the kinetic spin Bloch equation approach at low temperature.
The D’yakonov–Perel’ spin relaxation: temperature dependence and the effects of the Coulomb Hartree–Fock term and the

electron–hole scattering. In Fig. 94(c) the D’yakonov–Perel’ spin relaxation time as a function of temperature is plotted. The
initial spin polarization is P = 50%, i.e., ideal circularly polarized light excitation. To elucidate the role of the Coulomb
Hartree–Fock term, the spin relaxation time calculated without the Coulomb Hartree–Fock term is also plotted. It is seen
that the Coulomb Hartree–Fock term largely affects the spin relaxation at low temperature, whereas at high temperature it
is ineffective. The underlying physics is as follows: The spin relaxation time under the Hartree–Fock effective magnetic field
is estimated as (similar to Eq. (64))

τs(P) = τs(P = 0)[1+ (gµBBHFτ ∗p )
2
] (271)

where BHF is the averaged effective magnetic field and τ ∗p stands for the momentum scattering including the carrier-
carrier scattering. At low temperature, the carrier-carrier (see Eq. (268)) and electron–phonon scatterings are suppressed.
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Fig. 95. Intrinsic GaAs with Nex = 2 × 1017 cm−3 . Spin relaxation time τ as function of temperature for P = 2% (curve with �) and the spin relaxation
time as function of initial spin polarization P for T = 20 K (curve with •) (note that the scale of P is on the top of the frame). From Jiang and Wu [110].

Therefore, τ ∗p is large and the Hartree–Fock magnetic field has a strong effect on the spin relaxation time. However, at high
temperature the momentum scattering is strong and τ ∗p is small. Consequently, the Hartree–Fock magnetic field has little
effect on spin relaxation.
It is noted that without the Coulomb Hartree–Fock term the spin relaxation time has a non-monotonic temperature

dependence. Usually, the spin relaxation time without the Coulomb Hartree–Fock term is close to the spin relaxation
time at small initial spin polarization. To confirm this, Jiang and Wu plotted the spin relaxation time at the same
condition but for P = 2% in Fig. 95. It is seen that the spin relaxation time is indeed non-monotonic in temperature
dependence.83 In contrast, the spin relaxation timedecreaseswith increasing temperature in n-type III–V semiconductors, as
the electron–impurity scattering dominates at low temperature. The non-monotonic temperature dependence of the spin
relaxation time originates from the non-monotonic temperature dependence of the electron–electron and electron–hole
scattering times, as noted from Eqs. (268) and (269).84 The peak is then located in the crossover regime. Systematic
calculation indicates that the peak temperature is around TF/3 and lies in the range of (TF/4, TF/2) for various carrier
densities in both GaAs and InAs [110].
The spin relaxation time calculated without the electron–hole scattering is also plotted in Fig. 96(c) to indicate the

contribution of the electron–hole scattering. It is seen that at high temperature (T > 60 K), the spin relaxation time becomes
smaller without the electron–hole scattering. However, at low temperature (T < 60 K), the spin relaxation time becomes
larger. The decrease of the spin relaxation time at high temperature indicates the importance of the electron–hole scattering
according to themotional narrowing τs ∝ 1/τp. However, at low temperature, the Coulomb Hartree–Fock term complicates
the behavior. According to Eq. (271), if the Coulomb Hartree–Fock term plays a significant role [i.e., (gµBBHFτ ∗p )

2 > 1], then
τs ∼ [(|�|

2
−Ω2z )τ

∗
p ]
−1(gµBBHFτ ∗p )

2
∼ τ ∗p . Therefore removing the electron–hole scattering leads to a longer spin relaxation

time. These results demonstrate that the electron–hole scattering plays an important role in both low and high temperature
regimes.
The D’yakonov–Perel’ spin relaxation: initial spin polarization dependence. The effect of the Coulomb Hartree–Fock term is

also reflected in the initial polarization dependence of the spin relaxation time [41,42,44,326], which is plotted in Fig. 95. It
is seen that the spin relaxation time increases by about one order of magnitude when the initial spin polarization increases
from2% to 50%.Without the CoulombHartree–Fock term the increment of the spin relaxation time is negligible (not shown).
It was also found that, in contrast to the two-dimensional case [41,42,44,326], the initial spin polarization dependence in n-
type III–V semiconductors is very weak. This is because the momentum scattering in n-type III–V semiconductors is strong,
even at low temperature, as the impurity density is high (ni = ne) [110].
The D’yakonov–Perel’ spin relaxation: density dependence. In Fig. 96(a), the density dependence of the spin relaxation time

is plotted. It is seen again that the Bir–Aronov–Pikusmechanism ismuch less efficient then theD’yakonov–Perel’mechanism.
Remarkably, the density dependence is non-monotonic and a peak exhibits. The underlying physics is similar to that for the
n-type case, except that the electron–impurity scattering is substituted by the electron–hole scattering. As the electron–hole
scattering has a similar density dependence to that of the electron–electron scattering, the density dependence of the spin
relaxation time is then non-monotonic. The peak is also located in the crossover regime, where TF is around T . Such behavior
is also universal for all bulk intrinsic III–V semiconductors at all temperature.85

83 The non-monotonic temperature dependence of spin relaxation time has been observed in bulk intrinsic GaAs recently [902], which confirms the
prediction by Jiang and Wu [110].
84 The electron–hole scattering time has a similar temperature dependence as that of the electron–electron scattering.
85 Such a density dependence should also hold for strained III–V semiconductors, wurtzite semiconductors with bulk inversion asymmetry and bulk II-VI
semiconductors.
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a b

Fig. 96. Intrinsic GaAswith P = 50% and T = 40 K. (a) The Bir–Aronov–Pikus (BAP) andD’yakonov–Perel’ (DP) spin relaxation times τ as function of photo-
excitation density Nex . (b) The D’yakonov–Perel’ spin relaxation time from the full calculation (curve with •), from the calculation without the Coulomb
Hartree–Fock term (curve with �), and from the calculation without the electron–hole Coulomb scattering (curve with4). From Jiang and Wu [110].

To elucidate the role of the electron–hole scattering and the Coulomb Hartree–Fock term in spin relaxation, the spin
relaxation times calculated without these terms are plotted together with the spin relaxation time from the full calculation
in Fig. 96(b). The importance of the electron–hole scattering is obvious in a wide density range. The Coulomb Hartree–Fock
term is shown to be important only in the high density regime.86

5.6.4. Electron-spin relaxation in p-type bulk III–V semiconductors
Comparison of the D’yakonov–Perel’ and Bir–Aronov–Pikus mechanisms in GaAs. The main sources of spin relaxation have

been recognized as the Bir–Aronov–Pikus and D’yakonov–Perel’ mechanisms [3].87 An important issue is the relative
efficiency of the twomechanisms under various conditions. This was studied comprehensively by Jiang andWu in Ref. [110].
Below we review their results.
Low photo-excitation case. Jiang and Wu first discussed the low photo-excitation case. In this case, the electron

density is low and the electron system is nondegenerate. The ratio of the Bir–Aronov–Pikus spin relaxation time to the
D’yakonov–Perel’ one is plotted in Fig. 97(a) for various hole densities as a function of temperature. It is seen that the
D’yakonov–Perel’ mechanism dominates at high temperature, whereas the Bir–Aronov–Pikus mechanism dominates at low
temperature. This is consistent with the common belief in the literature [3,21,22,106,108,436].
The temperature dependences of the Bir–Aronov–Pikus and D’yakonov–Perel’ spin relaxation times are plotted in

Fig. 97(b) for a typical case with nh = 3 × 1018 cm−3. It is seen that both the D’yakonov–Perel’ spin relaxation time
and the Bir–Aronov–Pikus one decrease with temperature. As the electron system is nondegenerate, the inhomogeneous
broadening varies as∼ 〈|�|2 −Ω2z 〉 ∝ T

3, which leads to the rapid decrease of the D’yakonov–Perel’ spin relaxation time.
The Bir–Aronov–Pikus spin relaxation time decreases with temperature, partly because of the Pauli blocking of holes. To
elucidate this, the Bir–Aronov–Pikus spin relaxation time without the Pauli blocking of holes is plotted as a dotted curve in
Fig. 97(b). The results indicate that the Pauli blocking of holes effectively suppresses the Bir–Aronov–Pikus spin relaxation
at low temperature and makes the temperature dependence of the Bir–Aronov–Pikus spin relaxation time stronger.
High photo-excitation case. The high photo-excitation case was also discussed by Jiang and Wu. The excitation density

was taken as Nex = 0.1nh. The ratio of the Bir–Aronov–Pikus spin relaxation time to the D’yakonov–Perel’ one as a
function of temperature for various hole densities is plotted in Fig. 98(a). Interestingly, the ratio is non-monotonic and
has a minimum roughly around the Fermi temperature of electrons, T ∼ TF. In contrast to the low photo-excitation case,
the Bir–Aronov–Pikus mechanism no longer dominates the low temperature regime. To understand such behavior, the spin
relaxation times due to the two mechanisms and their ratio are plotted in Fig. 98(b) for a typical case nh = 3× 1018 cm−3.
Before looking at the figure, one should note that the only difference for the two cases is that the electron density is much
larger in the high excitation density. In the figure, one notices that, quite differently, the D’yakonov–Perel’ spin relaxation
time saturates at low temperature, which is the reasonwhy the ratio of the two spin relaxation times increases at decreasing
temperature. The underlying physics for the saturation of the D’yakonov–Perel’ spin relaxation time at low temperature is as
follows: As the electron density is high, at low temperature the electron systementers into the degenerate regime,where the
inhomogeneous broadening and the momentum scattering (dominated by the electron–impurity scattering) varies slowly
with temperature. This thus leads to the saturation of the D’yakonov–Perel’ spin relaxation time at low temperature.
Role of screening on D’yakonov–Perel’ spin relaxation. One may find from Fig. 98(b) that the D’yakonov–Perel’ spin

relaxation time has a non-monotonic temperature dependence. Unlike the non-monotonic temperature dependence in

86 The Hartree–Fock effective magnetic field can be estimated as BHF = ṼqneP/(gµB), where Ṽq describes the average Coulomb interaction. Hence the
Hartree–Fock effective magnetic field is strong at high electron density.
87 The Elliott–Yafet mechanism was checked to be unimportant in metallic regime for both p-GaAs and p-GaSb by Jiang and Wu [110].
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Fig. 97. p-GaAs. Ratio of the Bir–Aronov–Pikus spin relaxation time to the D’yakonov–Perel’ one τBAP/τDP as a function of temperature for various hole
densities with Nex = 1014 cm−3 and ni = nh . (a): nh = 3 × 1015 cm−3 (curve with •), 3 × 1016 cm−3 (curve with �), 3 × 1017 cm−3 (curve with4), and
3 × 1018 cm−3 (curve with O). (b): The spin relaxation times due to the Bir–Aronov–Pikus (BAP) and D’yakonov–Perel’ (DP) mechanisms, the total spin
relaxation time and the ratio τBAP/τDP (curve with4) vs. the temperature for nh = 3× 1018 cm−3 . The dotted curve represents the Bir–Aronov–Pikus spin
relaxation time calculated without the Pauli blocking of holes. Note the scale of τBAP/τDP is on the right hand side of the frame. From Jiang and Wu [110].

a b

Fig. 98. p-GaAs. Ratio of the Bir–Aronov–Pikus spin relaxation time to the D’yakonov–Perel’ one τBAP/τDP as a function of temperature for various hole
densities with Nex = 0.1nh and ni = nh . (a): nh = 3 × 1015 cm−3 (curve with •), 3 × 1016 cm−3 (curve with �), 3 × 1017 cm−3 (curve with 4),
and 3 × 1018 cm−3 (curve with O). The hole Fermi temperatures for these densities are T hF = 1.7, 7.7, 36, and 167 K, respectively. The electron Fermi
temperatures are TF = 2.8, 13, 61, and 283 K, respectively. (b): The spin relaxation times due to the Bir–Aronov–Pikus (BAP) and D’yakonov–Perel’ (DP)
mechanisms, the total spin relaxation time and the ratio τBAP/τDP (curve with4) vs. the temperature for nh = 3× 1018 cm−3 . The dotted (dashed) curve
represents the Bir–Aronov–Pikus spin relaxation time calculated without the Pauli blocking of electrons (holes). Note the scale of τBAP/τDP is on the right
hand side of the frame. From Jiang and Wu [110].

intrinsic semiconductors, here the behavior is not caused by the carrier–carrier scattering. The underlying physics is a
little bit more complex: it is related to the temperature dependence of screening. To elucidate the underlying physics,
Jiang and Wu plotted the D’yakonov–Perel’ spin relaxation times calculated with the Thomas–Fermi screening [346]
[which applies in the degenerate (low temperature) regime], the Debye–Huckle screening [346] [which applies in the
nondegenerate (high temperature) regime] and the screening with the random-phase approximation [346] (which applies
in the whole temperature regime) in Fig. 99(a). It is noted that with the Thomas–Fermi screening (which is temperature-
independent) the peak disappears, whereas with the Debye–Huckle screening the peak remains. This indicates that the
increase of screening with decreasing temperature is crucial for the appearance of the peak. The scenario is as follows:With
decreasing temperature, the electron system gradually enters into the degenerate regime and the temperature dependence
of the inhomogeneous broadening ∼ 〈|�|2 − Ω2z 〉 becomes mild. However, as the hole Fermi energy is smaller than
the electron one (due to its large effective mass), there is a temperature interval where the hole system is still in the
nondegenerate regime. The screening, which mainly comes from holes (again, due to its large effective mass), still increases
significantlywith decreasing temperature, κ2 ∼ 1/T . Therefore, the electron–impurity scattering (the dominant one at such
temperatures) time, τ eip ∝ 1/[〈V

2
q 〉 ∝ 〈(q

2
+ κ2)−2〉], increases with decreasing temperature. Thus the spin relaxation time,

τs ∼ 1/(〈|�|2 −Ω2z 〉τ
ei
p ), decreases with decreasing temperature in such a temperature interval. When the temperature is

further lowered, both the screening and the inhomogeneous broadening vary littlewith temperature and the spin relaxation
time saturates. These behaviors, together with the decrease of the spin relaxation time with increasing temperature at high
temperature (mainly due to the increase of inhomogeneous broadening in the nondegenerate regime), lead to the non-
monotonic temperature dependence. The peak is roughly around the electron Fermi temperature, T ∼ TF .
It is noted fromFig. 98(b) that the temperature dependence of the total spin relaxation time is stillmonotonic: it decreases

with increasing temperature. This is due to the contribution of the Bir–Aronov–Pikus mechanism. It is expected that in
other materials where the Bir–Aronov–Pikus mechanism is less important than that in GaAs, such as GaSb, the temperature
dependence of the total spin relaxation time is non-monotonic.
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Fig. 99. (a) p-GaAs with hole density nh = 3 × 1018 cm−3 , ni = nh and Nex = 0.1nh . Temperature dependence of the D’yakonov–Perel’ spin relaxation
times calculated with the Thomas–Fermi (TF) (curve with �) and Debye–Huckle (DH) (curve with4) screenings as well as the screening with the random-
phase-approximation (RPA) (curve with •). (b) n-GaAs with electron density ne = 2× 1015 cm−3 , ni = ne and Nex = 4× 1013 cm−3 . The spin relaxation
times calculated with the Thomas–Fermi and Debye–Huckle screenings as well as the screening with the random-phase-approximation vs. temperature.
From Jiang and Wu [110].

The question arises thatwhether there is a non-monotonic temperature dependence of the spin relaxation time in n-type
semiconductors due to screening. A simple estimationmayhelp to illustrate the problem: the electron–impurity scattering88
rate varies as 1/τ eip ∝ 〈kV

2
q 〉 ∝ 〈k(q

2
+ κ2)−2〉 ∼ 〈k〉(κ2)−2 ∼ T 2.5,89 whereas the inhomogeneous broadening varies as

∼ 〈|�|2 − Ω2z 〉 ∼ 〈ε
3
k〉 ∼ T

3. Therefore, the spin relaxation time τs ∼ 1/[〈|�|2 − Ω2z 〉τ
ei
p ] ∼ T

−0.5, still decreases with
increasing temperature. Such an estimation applies for the nondegenerate regime. For other regimes, the inhomogeneous
broadening still varies with temperature faster than the scattering rate does. Therefore the the spin relaxation time always
decreases with increasing temperature in n-type III–V semiconductors in the metallic regime.
However, the situation may change when the strain-induced spin–orbit coupling dominates. In such a case, the

inhomogeneous broadening ∼ 〈|�|2 − Ω2z 〉 ∼ 〈εk〉 ∼ T varies with temperature slower than the electron–impurity
scattering does. One readily obtains that τs ∼ T 1.5 in the nondegenerate regime. As shown in Fig. 99(b), the temperature
dependence is indeed non-monotonic in strained n-GaAs with ne = 2 × 1015 cm−3. However, the screening effect is only
important for low electron density ne . 1016 cm−3. At high electron density, the screening plays a marginal role in the
electron–impurity scattering, even at low temperature. This is because 1/τ eip ∝ 〈k(q

2
+ κ2)−2〉. When electron density is

high, the q2 factor becomes larger than κ2 on average.
Photo-excitation density dependence.After analyzing the relative efficiency of the D’yakonov–Perel’ and Bir–Aronov–Pikus

mechanisms in the two limiting cases of low and high photo-excitation, one would be eager to see the crossover between
the two limits. In Fig. 100 the photo-excitation density dependence of the Bir–Aronov–Pikus and D’yakonov–Perel’ spin
relaxation times, as well as their ratio, are plotted for two hole densities at 50 K. In the low excitation limit, the
D’yakonov–Perel’ (Bir–Aronov–Pikus) mechanism is more important for the case in Fig. 100(a) [(b)]. For both cases, the
Bir–Aronov–Pikus and D’yakonov–Perel’ spin relaxation times first decrease slowly then rapidly with increasing photo-
excitation density. Moreover, the D’yakonov–Perel’ spin relaxation time decreases faster than the Bir–Aronov–Pikus one.
Hence the importance of the Bir–Aronov–Pikus mechanism decreases with photo-excitation density.
To understand such behavior, one notices that only the electron density varies significantly with the photo-excitation

density. The photo-excitation density dependence of the Bir–Aronov–Pikus spin relaxation time mainly comes from the
fact that 1/τBAP ∝ 〈vk〉 ∝ 〈ε

1/2
k 〉 (see Eq. (69)), whereas that of the D’yakonov–Perel’ spin relaxation time originates from

the inhomogeneous broadening 1/τDP ∝ 〈|Ω|2 − Ω2z 〉 ∝ 〈ε
3
k〉. At low photo-excitation density, the electron system is

nondegenerate, thus both the Bir–Aronov–Pikus and D’yakonov–Perel’ spin relaxation times vary slowly. At higher photo-
excitation density, both the Bir–Aronov–Pikus and D’yakonov–Perel’ spin relaxation times decrease rapidly with photo-
excitation density but the D’yakonov–Perel’ spin relaxation time decreases faster.
Hole density dependence. Thehole density dependence of both theD’yakonov–Perel’ andBir–Aronov–Pikus spin relaxation

times, together with their ratio, are plotted in Fig. 101. It is noted that the Bir–Aronov–Pikus spin relaxation time decreases
as 1/nh at low hole density, which is consistent with τBAP ∝ 1/nh (see Eq. (67)). At high hole density, τBAP decreases
slower than 1/nh due to the Pauli blocking of holes. The density dependence of the D’yakonov–Perel’ spin relaxation time
is not so obvious: the spin relaxation time first increases, then decreases and again increases with the hole density. As the
electron distribution (hence the inhomogeneous broadening) does not change with the hole density, the variation of the
D’yakonov–Perel’ spin relaxation time comes solely from the momentum scattering (dominated by the electron–impurity
scattering). Jiang and Wu found that the non-monotonic hole density dependence of the D’yakonov–Perel’ spin relaxation
time is again related to the screening.

88 The electron–impurity scattering is the cause of the monotonic temperature dependence of the spin lifetime in n-type semiconductors.
89 The factor 〈k〉 comes from the density of states. This factor varies little in the p-type case in the above discussion at the relevant temperature, as the
electron system is in the degenerate regime.
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Fig. 100. p-GaAs. Spin relaxation times τ due to the Bir–Aronov–Pikus (BAP) andD’yakonov–Perel’ (DP)mechanisms togetherwith the total spin relaxation
time vs. the photo-excitation density Nex . The ratio of the two is plotted as a dashed curve (note that the scale is on the right hand side of the frame). (a):
ni = nh = 3× 1017 cm−3 . (b): ni = nh = 3× 1018 cm−3 . T = 50 K. From Jiang and Wu [110].

a b

Fig. 101. p-GaAs. (a): spin relaxation times τ due to the Bir–Aronov–Pikus (BAP) and D’yakonov–Perel’ (DP) mechanisms together with the total spin
relaxation time against hole density nh . Nex = 1014 cm−3 , ni = nh , and T = 60 K. The dotted curve denotes a fitting of the curve with • using 1/nh scale.
The curvewith4 denotes the ratio τBAP/τDP (note that the scale is on the right hand side of the frame). (b): spin relaxation times due to theD’yakonov–Perel’
mechanism with the Debye–Huckle (DH) (curve with �), Thomas–Fermi (TF) (curve with4), and the random-phase-approximation (RPA) (curve with •)
screenings. The ratio κ2/〈q2〉 is plotted as a curve with O (note that the scale is on the right hand side of the frame). From Jiang and Wu [110].

To elucidate the underlying physics, the D’yakonov–Perel’ spin relaxation time calculated with the random-phase-
approximation screening, together with those calculated with the Thomas–Fermi screening [346] and the Debye–Huckle
screening [346], are plotted in Fig. 101(b). From the figure it is seen that the first increase and the decrease are related to
the Debye–Huckle screening, whereas the second increase is connected with the Thomas–Fermi screening. The underlying
physics is understood as follows: In the low hole density regime, the screening (mainly from holes) is small and the
Coulomb potential, Vq ∝ 1/(κ2 + q2), changes slowly with the screening constant κ as well as hole density. Hence the
electron–impurity scattering increases with nh as 1/τ eip ∝ ni = nh. For higher hole density (nh > 10

17 cm−3), the screening
constant κ becomes larger than the transferred momentum q. Hence the electron–impurity scattering decreases with nh
because 1/τ eip ∝ ni〈(κ

2
+ q2)−2〉 ∼ nhκ−4 ∝ n−1h , as κ

2
∝ nh for the Debye–Huckle screening. As the hole density increases,

the hole system gradually enters the degenerate regime, where the Thomas–Fermi screening applies and κ2 ∝ n1/3h .
Hence, the electron–impurity scattering increases with the hole density as 1/τ eip ∝ nhκ

−4
∝ n1/3h . Consequently, the

D’yakonov–Perel’ spin relaxation time first increases, then decreases and again increases with increasing hole density.

6. Spin diffusion and transport in semiconductors

6.1. Introduction

The implementation of spintronic devices also relies on the understanding of spin resolved transport phenomena. The
first prototype of the spin field-effect-transistor, proposed by Datta and Das [54] and named after them, utilizes the Rashba
spin–orbit coupling for operation. As shown in Fig. 102, the so called Datta–Das transistor consists of a three-layer structure
with magnetic source and collector connected by a semiconductor channel, and a voltage gate. The spin polarized carriers
are injected into the conducting channel from the source and driven towards and detected by the collector. The carriers
can flow freely through the drain (‘‘on’’ state) if their spins are parallel to that of drain or are blocked (‘‘off’’ state) if anti-
parallel. Similar to the traditional field-effect-transistor, the on/off states of spin field-effect-transistor are switched by
the gate voltage which controls the spin direction of the passing carriers via the Rashba spin–orbit coupling acting as an
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Fig. 102. Schematic of Datta–Das transistor. From Datta and Das [54].

effective magnetic field, with its strength controlled by the gate voltage. It is believed that spin field-effect-transistor has
the advantages of low energy consumption and fast switching speed since it does not involve creating or eliminating the
electrical conducting channel during the switching like the traditional field effect transistor [576,903].90
As one can see from the operation of the spin field-effect-transistor prototype, the topics of spin transport include the

generation of nonequilibrium spin polarized carriers in conductors, the transfer of these carriers from one place to another
inside the conductor and/or across the interfaces into other conductors, as well as the detection of the spin signal of these
carriers.
Generation of the spin polarization can be achieved by optical orientation of the electron spin through transfer of angular

momentum of the circularly polarized photons to the carriers [3] and electric injection of spin polarized carriers from the
ferromagnetic conductor into the non-magnetic conductor [904,905]. When electrons transfer from a spin polarized regime
to an unpolarized one, say from a ferromagnetic metal or semiconductor across the interface into non-magnetic conductors,
nonequilibrium spin polarization accumulates near the interface [23,906]. Due to spin relaxation, the spin polarization of
the carriers in the nonmagnetic conductor is not spatially uniform but decays as the carriers move away from the interface,
characterized by the spin injection length. The spatial inhomogeneity of the spin polarization also results in spin diffusion,
whose rate is described by the spin diffusion coefficient. In the presence of the electric field, spins are dragged by the electric
field along with the carriers. The response to the electric field is characterized by the conductivity or mobility. An important
task is to reveal the relations among these characteristic parameters and how these parameters change under different
conditions. Spin detection is to extract the information of spin polarization by sensing the change of the magnetic, optical
and/or electrical signals due to the nonequilibrium spin polarization in the non-magnetic conductor. In experiments, optical
methods are usually more powerful, as one can generate high spin polarization in the semiconductor and detect the spin
signals with spatial resolution optically. However, it is more desirable to generate and detect the spin signal electrically in
real spintronic devices.
Even though the Datta–Das transistor is conceptually simple, there are some crucial obstacles which make it hard to

realize: The low spin injection/detection efficiency between the semiconductor and ferromagnetic source and drain due to
the conductancemismatch [907–910] (see Section 6.2.4 for details) and spin–flip scattering at the interfaces [911–914], spin
relaxation in the semiconductor channel due to the joint effect of the spin–orbit coupling and (spin conversing) scattering
[101,102,915] (see Section 5 for more details), and the precise control of the gate controlled spin–orbit coupling. Due to
these difficulties the Datta–Das transistor had not been realized until Koo et al. claimed so recently [55], although there is
still controversy on their claim [916–918].
To overcome these obstacles one must first understand spin transport inside the semiconductor channel and across the

interfaces. Many of the understandings on spin transport, to be reviewed in following sections, have been gained in the past
decade. Based on these understandings, some variants of theDatta–Das transistor have been proposed. Schliemann et al. first
proposed a nonballistic spin field-effect-transistor based on the spin–orbit coupling of both the Rashba and the Dresselhaus
types [339]. Due to the interplay of these two types of spin–orbit coupling, the spin diffusion length in the semiconductor
channel becomes larger, or even infinite, for spins polarized along some special directions [194,196,203,919,920] or for spin
polarized currents flowing in some special directions [18,20,29,37,339,921] (see Section 7.5 for details). This type of spin
field-effect-transistor is robust against the spin conversing scattering and is a more realistic alternative to the Datta–Das
spin field-effect-transistor.

6.2. Theory of spin injection based on the drift-diffusion model

Although spin transport in a semiconductor is a relatively new problem, the study of spin transport in ferromagnetic
materials has a much longer history. It is thus natural to borrow the concepts and methods of spin transport in

90 Although operations of the spin field-effect-transistor do not create or eliminate a conducting channel, the electrons have to travel between the source
and drain when the transistor switches on/off states. Therefore, the switching time of spin field-effect-transistor is limited by the mobility of the channel.
The energy dissipation and the switching time of traditional and spin field-effect-transistors were compared theoretically by Hall and Flatté [222]. They
pointed out that the energy dissipation of a typical spin field-effect-transistor can be two orders of magnitude smaller than that of a typical traditional
transistor, but the switching time is usually longer [222].
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ferromagnetic metals to study the spin transport in semiconductors. In ferromagnetic conductors, the carriers and current
are spontaneously spin polarized below the Curie temperature. The basic transport properties of ferromagnetic metal can
be understood by the two-current model, where majority (say, spin-up) and minority (spin-down) carriers contribute
unequally and independently to the total conductance [922–926]. In the two-current model, the spin-up and -down
electrons transport independently except for a weak spin–flip scattering that flips carriers of one spin to the other [907,908,
925,927]. The carriers of different spins usually have different diffusion coefficients D↑/↓ and mobilities µ↑/↓. The electric
currents of the spin-up and -down electrons are determined by the drift caused by the electric field and diffusion due to the
spatial inhomogeneity of the carrier densities. To a linear approximation and in the diffusive limit, the currents are [22,907,
908,927]

jη = −enη〈vη〉 = eµηnηE+ eDη∇nη = σηE+ eDη∇nη, (η =↑,↓), (272)

where nη and ση = eµηnη are the electron density and conductance of spin η, respectively. The electric field E is determined
by the Poisson equation

∇ · E = −∇2φ = e(n↑ + n↓ − n0)/ε, (273)

with φ, −e, ε and n0 being the electric potential, electron charge, dielectric constant and the background positive charge
density respectively. Since the total electron number is conservative, one can write down the continuity equations for these
two kinds of electrons:

∂nη
∂t
=
1
e
∇ · jη −

δnη
τηη̄
+
δnη̄
τη̄η

, (274)

with δnη = nη− n0η and τηη̄ standing for the deviation of the nonequilibrium charge density nη from the equilibrium one n
0
η

and the average carrier spin–flip time, respectively.
Combined with different initial and boundary conditions, the above drift-diffusion equation or its equivalent is widely

used in the study of spin-related transport in semiconductors, including in the understanding of the existing experimental
spin injection/extraction results and in the proposing of new schemes of spintronic devices. However, it should be pointed
out that, although these equations give qualitatively correct results in many cases, the validity of the drift-diffusion model
should be carefully examined when applied to spin transport in semiconductors. This is because the spin transport in a
ferromagneticmetal and semiconductor can be quite different: First, the applied electric field and spatial gradient of electron
density in ametal are usually small due to the large conductance and high carrier density, hence electrons are usually not far
away from the equilibrium. Therefore Eq. (272) describes the current in metals accurately in most cases. In semiconductors,
however, both the applied electric field and the gradient of carrier density can be very large, and electrons can be easily
driven to states far away from the equilibrium. As a result, Eq. (272) may no longer hold. More importantly, the spin-up and
-down branches in a ferromagnetic metal are well separated and the coherence between these two branches is very small.
While in a nonmagnetic semiconductor the spin-up and -down electrons are usually degenerate, an applied or effective
(from the spin–orbit coupling) magnetic field can cause spins to precess and result in large spin coherence.
Therefore a quantitative calculation based on the drift-diffusion model is questionable when the spin coherence is

essential to the spin kinetics orwhen the electrons involved in the transport are far away fromequilibrium. It has been shown
that in the presence of a magnetic field, either an externally applied one or the intrinsic effective one from the spin–orbit
coupling, the drift-diffusion model is inadequate in accounting for the spin transport in semiconductors [25,27,28,32,336].
Nevertheless, the drift-diffusion model is still useful in a qualitative study of spin transport because of its simplicity and
flexibility to add new factors of physics.

6.2.1. Spin transport in nonmagnetic semiconductors using the drift-diffusion model
One can easily obtain some basic properties of the spin transport using the drift-diffusion model to study the transport

property of the magnetic momentum inside nonmagnetic semiconductors in the simplest case. Assuming that the charge
density in the nonmagnetic semiconductor is uniform and the electronic transport coefficients are not affected by the spin
polarization, one can then write down the transport equation for the magnetic momentum S in a uniform electric field E
and magnetic field B [915],

∂S
∂t
= D∇2S− eµE ·∇S+ gµBB× S−

S
τs
, (275)

with µ, D, and 1/τs being the charge mobility, diffusion coefficient and spin relaxation time, respectively. Note that the
drift-diffusion equation here has been modified to include the Larmor precession of the spin around the applied magnetic
field B.
Spin accumulation in the steady state.When a semiconductor is in contact with a spin polarization source at x = 0, B = 0

and the electric field is along the x-direction, the drift-diffusionmodel predicts spin accumulationwith an exponential decay
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in the semiconductor S(x) = S0 exp[−x/Ls(E)], in which the electric-field-dependent spin injection length reads [904,928,
929]

L−1s (E) =
1
Ls

√
1+

L2d
4L2s
−
E
|E|
Ld
2L2s

, (276)

where Ls =
√
Dτs is the diffusion length, Ld = |eµE|τs = |vd|τs is the drifting length over the spin relaxation time with drift

velocity vd determined by the electric field. Without the electric field, the spin injection length is the diffusion length Ls. The
applied electric field can significantly change the injection length by dragging or pulling the electron [928,929]: For a large
downstream electric field, the electron spin injection is the distance that the electrons move with drift velocity within the
spin lifetime time, Ls(E) = Ld; for large upstream field, Ls(E) = L2s /Ld.
Evolution of the spin polarized electron package. The shape of a spin polarized carrier packet changes with time due to the

drift and diffusion. The temporal evolution of a δ spin polarized packet of height S0 at x = 0 is

S(x, t) =
S0

√
2πDt

exp
[
−
t
τs
−
(x− vdt)2

4Dt

]
, (277)

which has the form of a Gaussian function whose center is determined by the drifting, vdt , and whose width is determined
by the diffusion,

√
Dt .

6.2.2. Hanle effect in spin transport
In the spatially homogeneous system with a spin excitation source, such as circularly polarized light [2,311,930] or

spin resonant microwave radiation [931,932], the total spin is the accumulation of survival spin from the past. When a
perpendicular magnetic field is present, the spin undergoes Larmor precession. Since spins excited at different times have
different precession phases and tend to cancel each other, the perpendicular magnetic field reduces the total accumulated
spin. This is known as the Hanle effect [915,933]. In spin transport, the Hanle effect also appears [150]: Spin accumulation
at position x is the sum of the electron spins traveling from different places. Since different electrons have different transit
times when they reach x, their phases are different and tend to cancel each other. As shown in Fig. 103, for a constant spin
pumping/injection starting from t = 0 at x = 0, when a constant magnetic field B is applied along the ŷ direction, the spin
accumulation at time t and position x is

Sz(x, t) =
∫ t

0

S0
√
2π t ′

e−t
′/τs−(x−eµEt ′)2/(4Dt ′) cosωt ′dt ′, (278)

Sx(x, t) =
∫ t

0

S0
√
2π t ′

e−t
′/τs−(x−eµEt ′)2/(4Dt ′) sinωt ′dt ′, (279)

withω = gµBB being the Larmor frequency. For the steady state spin injection under amagnetic field, the spin accumulation
can be calculated by letting time in Eqs. (278) and (279) go to infinity or can be solved directly from Eq. (275). The results
are

Sz(x) = S0e−x/Ls(E,B) cos[x/L0(E, B)], (280)

Sx(x) = S0e−x/Ls(E,B) sin[x/L0(E, B)], (281)

where

L−1s (E, B) =
E
|E|
Ld
2L2s
+
1
Ls

√(
1+

L2d
4L2s

)2
+ (ωτs)2 cos

θ

2
, (282)

L−10 (E, B) =
1
Ls

√(
1+

L2d
4L2s

)2
+ (ωτs)2 sin

θ

2
, (283)

tan θ =
ωτs

1+ L2d/(4L2s )
. (284)

One can see that the spin polarizations change with position as a damped oscillation with the electric and magnetic field
dependent injection length Ls(E, B) and the spatial oscillation ‘‘period’’ L0(E, B) defined by Eqs. (282)–(284). Even when
there is no spin relaxation mechanism, i.e., τs = ∞, the spin injection length is still finite in the presence of a perpendicular
magnetic field, L−1s (0, B) = L

−1
0 (0, B) =

√
ω/2D.91Without the driving of the electric field, the oscillation ‘‘period’’ is larger

or close to the injection length, which means that the oscillation may not be easy to detect. Under a strong downstream
electric field, Ls(E, B) ' Ld, and L0(E, B) ' Ld/ωτs, it is then possible to observe many oscillations in spin accumulation.

91 This effect was first predicted by Weng and Wu microscopically from the kinetic spin Bloch equation approach [336].
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Fig. 103. Orientations of spin transport and electric/magnetic fields.

6.2.3. Spin injection theory
To study the spin injection from a ferromagnetic electrode to a semiconductor, it is usually more convenient to use

the drift-diffusion equation in the form of the electrochemical potential [22,907,908,927]. For the state near equilibrium,
δnη(r) = gηδζ̃η(r), with δζ̃η(r) = ζ̃η(r) − ζ̃ 0η (r) standing for the deviation in the chemical potential ζ̃η(r) away from the
equilibrium one ζ̃ 0η (r) of the electron with spin η at position r. gη = (∂nη/∂ζ̃η) is the temperature dependent density of
states. The current can be rewritten as [22,907,908,927]

jη = −ση∇φ(r)+ eDηgη∇δζ̃ =
ση

e
∇ζη(r), (285)

inwhichwehave used the Einstein relation,ση = e2Dηgη , and introduced the electrochemical potential, ζ (r) = ζ̃ (r)−eφ(r).
Introducing the notation, g = g↑ + g↓, gs = g↑ − g↓, σ = σ↑ + σ↓, σs = σ↑ − σ↓, ζ = (ζ↑ + ζ↓)/2, ζs = (ζ↑ − ζ↓)/2,

D = (D↑ + D↓)/2 and Ds = (D↑ − D↓)/2, and enforcing charge neutrality, i.e. n↑ + n↓ ≡ n0↑ + n
0
↓
, one obtains

ζ (x)+ eφ(x) = −gsζs(x)/g. (286)

The non-equilibrium spin accumulation is expressed as

δS =
4g↑g↓
g

ζs. (287)

From Eq. (285) one can further write down the charge and spin currents expressed in form of the electrochemical potential,

je = j↑ + j↓ =
σ

e
∇ζ +

σs

e
∇ζs, (288)

js = j↑ − j↓ =
σs

e
∇ζ +

σ

e
∇ζs, (289)

∂ζs

∂t
= D∇2ζs −

ζs

τs
, (290)

with D = g(g↑/D↓ + g↓/D↑)−1 being the effective spin diffusion coefficient.
From these equations, one can obtain the spin transport properties in conductors. For a nonmagnetic conductor, the spin-

up and -downbands are degenerate, one recovers the results obtained in Section 6.2.1 for the spin transport in a nonmagnetic
conductor under a weak electric field. In a ferromagnetic conductor, the dynamics of nonequilibrium spin accumulation is
similar to that in a nonmagnetic conductor, i.e., it exponentially decayswith the position,with the spin diffusion length being
Ls =

√
Dτs. For a uniform ferromagnetic conductor without nonequilibrium spin accumulation, the current polarization is

determined by the difference of the conductivities of the two spin branches,

Pσ = js/je = σs/σ . (291)

In the presence of the spin accumulation, the current polarization is modified as

Pj = Pσ + Ls∇ζs/(jeR), (292)

where R = σ Ls/(4σ↑σ↓) is the effective resistance of the conductor with unit surface area over a distance of the diffusion
length.

6.2.4. Spin injection efficiency of a ferromagnetic conductor/nonmagnetic conductor junction
To discuss the spin injection from a ferromagnetic conductor into a nonmagnetic conductor, one needs to study the

transport through their interface. In the drift-diffusion model, the effect of the interface is phenomenally described by spin
selective interface conductance. Assuming that there is no strong spin–flip scattering at the interface, the current of each spin



186 M.W. Wu et al. / Physics Reports 493 (2010) 61–236

Fig. 104. Schema of the Silsbee–Johnson effect and all electrical spin detection. From Johnson [940].

branch is conservative. However, the electrochemical potential can be discontinuous if the contact is not ohmic. Introducing
the contact conductance Ση for spin η, the boundary condition at the interface (x=0) is then written as [904,905,907,908,
910]

jη(0) = Ση[ζηF (0)− ζηN(0)]. (293)

Similarly, one can introduce Σ = Σ↑ + Σ↓, Σs = Σ↑ − Σ↓ and rewrite the boundary conditions for charge current and
spin current.
Using the above drift-diffusion equation, the matching condition of the interface at x = 0, and the boundary conditions

ζsF (−∞) = 0 and ζsN(∞) = 0 at the far left end of the ferromagnetic electrode and the far right end of the nonmagnetic
electrode, one is able to write down the spin injection efficiency across the ferromagnet/nonmagnetic conductor junction.
The current polarization at the interface is [907,908]

Pj(0) =
js(0)
je(0)

=
RFPσ F + RcPc
RF + Rc + RN

, (294)

where RF , RN and Rc = Σ/(4Σ↑Σ↓), are the effective resistances of the ferromagnetic conductor, nonmagnetic conductor
and contact, respectively. Pσ F and Pc = (Σ↑−Σ↓)/Σ are the conductance polarizations of the ferromagnetic conductor and
contact respectively. Since the ferromagnetic conductor usually has a much larger conductance and shorter spin diffusion
length, RF � RN . Therefore, for transparent contact, the polarization of the injected current Pj(0) = Pσ FRF/(RF + RN) is
much smaller than Pσ F , the current polarization in ferromagnetic conductor, due to the conductance mismatch [907–910].
For large contact resistance, the current polarization is determined by the contact polarization Pj(0) ' Pc . Therefore the
conduction mismatch can be reduced by inserting a spin selective layer with large resistance [22,907–910,927,934]. One
can also avoid the conductance mismatch by using a spin filter [935–937] to replace the ferromagnetic metal as a spin
injector.

6.2.5. Silsbee–Johnson spin–charge coupling
In electrical spin injection, the spin polarized current flows from a ferromagnetic electrode into a nonmagnetic conductor

and produces a non-equilibrium spin accumulation near the interface in the nonmagnetic conductor. The inverse of the
above effect also holds: The presence of non-equilibrium spin accumulation in the nonmagnetic conductor near the interface
will produce an electromotive force in the circuitwhich drives a charge current to flow in a close circuit or results in a voltage
drop in an open circuit. This effect is called Silsbee–Johnson spin charge coupling [905,938]. This spin–charge coupling can
affect the spin transport properties in return. In the spin injection, the electromotive force caused by the spin accumulation
impedes the charge/spin current and reduces the overall conductivity, which is called the spin bottleneck effect [905,938–
941].
Physically speaking, this spin–charge coupling can be understood by the simplifiedmodel shown in Fig. 104, proposed by

Silsbee [938]. In this model, it is assumed that the ferromagnetic electrode is a half-metal so that only one spin branch (say,
spin-up) electrons carry the current and the Fermi levels in ferromagnetic and nonmagnetic conductors are aligned before
they are connected. After they are connected, the spin accumulation near the interface raises the (electro)chemical potential
of the spin-up electrons in the nonmagnetic electrode, and lowers that of the spin-down electrons to ensure the neutrality of
charge, as shown in the left part of Fig. 104. As a result of this electrochemical potential shifting in the nonmagnetic electrode,
an electromotive force must be produced to raise the electrochemical potential in the ferromagnetic electrode so that it
aligns with that of spin-up electrons in the nonmagnetic electrode. Quantitative calculation of Silsbee–Johnson coupling
based on the drift-diffusionmodel can be obtained from Eqs. (286)–(293). In close circuit the change in the resistance caused
by the spin bottleneck effect is

δR =
RN(RcP2c + RFP

2
F )+ RFRc(PF − Pc)

2

RF + Rc + RN
. (295)

For more complicated structures like ferromagnetic/nonmagnetic/ferromagnetic conductors, the resistance change due to
the spin accumulation depends on the length of the nonmagnetic conductor and the spin polarizations of the ferromagnetic
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electrodes. When the length of the nonmagnetic conductor is much larger than the spin diffusion length, the resistance
change is simply the sum of that of two ferromagnetic/nonmagnetic contacts. When the length of the nonmagnetic
conductor is smaller than or of the order of the spin diffusion length, the change in resistance depends on the alignment of
the magnetic momentum of the two electrodes, as shown in the right part of Fig. 104. This is known as the spin valve effect.
It can be quantitatively calculated by matching the boundary conditions on these two contacts [908].
In open circuit, for a spin accumulation at x = 0, the voltage drop caused by the electromotive force over a distance far

longer than the spin diffusion length is given by

∆φ =
(
gs/g − σs/σ

)
ζs(0)/e. (296)

If a second ferromagnetic electrode is attached to the nonmagnetic electrode, it can be used to detect the spin accumulation
at the interface of the nonmagnetic electrode and the second ferromagnetic electrode. If there is spin accumulation, the
voltage drop between the nonmagnetic and the second ferromagnetic electrodes depends on the relative alignments of the
spin momentums in these two electrodes, as shown in the right part of Fig. 104. Silsbee–Johnson spin–orbital coupling is
particular useful in non-local spin detection [281,940–946].

6.3. Spin injection through Schottky contacts

In the drift-diffusion model, the contact of a ferromagnetic conductor and semiconductor is usually described as a sheet
layer with finite or zero resistance. Studies of the spin injection through a Schottky barrier, which appears naturally at the
interface of a ferromagnetic metal and semiconductor, have also been carried out using the drift-diffusion model [947,948]
and Monte Carlo simulation [949–954].
In the framework of the drift-diffusion model, the tunneling through the Schottky barrier is still described by a (spin

selective) interface resistance. However, the conductivity inside the semiconductor is no longer a constant, since it is
proportional to the carrier concentration, which varies dramatically with position near the Schottky barrier. Taking the
position dependence of the conductivity into account, it is shown that the existence of a depletion region of the Schottky
barrier greatly reduces the spin accumulation. For a ferromagnetic metal/semiconductor contact with significant depletion
region, the spin accumulation is reduced almost to zero in a distance less than 100 nm [947,948]. Outside the depletion
region, the spin accumulation decays with the distance at a slower rate of spin injection length (of the order of 1 µm).
The existence of the Schottky barrier also greatly reduces the spin polarization of the injected current. Although the spin
polarization of the injected current decays at the rate of the spin injection length throughout the semiconductor side, it
drops rapidly inside the ferromagnetic conductor near the ferromagnetic metal/semiconductor surface when a high barrier
is presented.
In the Monte Carlo simulations, studies focus on the transport inside the semiconductor. The ferromagnetic conductor

is treated as a source that provides spin polarized carriers and is not affected by the semiconductor. The current is injected
into the semiconductor through the barrier by both thermionic emission and direct tunneling [955,956]. In this model,
the tunneling probability through the barrier, proportional to the density of states for spin-up and -down carriers in the
ferromagnetic conductor, is naturally spin dependent. Therefore, this model is beyond the drift-diffusion model. In the
simulation, the spatial profile of the Schottky barrier is determined by solving the charge motion and the Poisson equation
self-consistently [957]. The transport in the semiconductor is based on a semiclassical approximation that includes ‘‘drifting’’
and ‘‘scattering’’ processes. The electron spin is subjected to the influence of the Rashba and/or Dresselhaus spin-obit
interaction during the ‘‘drifting’’ process. The Monte Carlo simulations of the spin injection from an Fe contact into a GaAs
quantum well showed that, although injected spin polarization is large right next to the Schottky barrier, similar to the
results of the drift-diffusionmodel, the total spin polarization drops to nearly zero in a few tens of nanometers, a distance of
the order of the depletion region, due to large unpolarized carriers in the semiconductor. Moreover, the average magnetic
momentum of the injected electrons also decays dramatically in the depletion region but much more slowly beyond that.
This is because the Rashba and Dresselhaus spin–orbit couplings depend on the electron momentum, the larger the kinetic
energy, the larger the effective magnetic field. In the depletion region, electrons have much larger kinetic energy, and
therefore suffer a much faster decay rate. Outside the depletion region, the decay rate is much slower, as electrons lose
their kinetic energy to overcome the electrical potential barrier as well as due to the inelastic scattering [949–954]. Usually,
the Rashba effect considered in the spin kinetics in quantum wells is determined by the electric field perpendicular to the
quantum well plane (due to the built-in electric field or the gate voltage). In the presence of the Schottky barrier, there is a
strong in-plane electric field in the depletion region induced by the barrier. This barrier induced electric field also leads to
the Rashba effect and further reduces the magnetic momentum of the injected electrons [952].
One can see from the above studies that a high Schottky barrier with significant depletion region is highly undesirable

for spin injection. In order to increase the spin injection efficiency, one needs to modify the Schottky barrier. A thin heavily
doped n+ layer, which sharply reduces the height and thickness of the barrier, was proposed to be inserted between the
ferromagnetic electrode and semiconductor to increase the injection efficiency [958–965]. Using this setup, highly efficient
electrical spin injection can been achieved. It has been reported that over a wide range of temperature, up to 30% of the spin
polarization is injected from Fe into n-type AlGaAs and GaAs and survives over a distance of 100 nm [958,959,964]. Up to
50% spin polarization has been reported to survive over a distance of 300 nm in the experiments of spin injection from Fe
into n-type ZnSe when the temperature is around or less than 100 K [966].
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Theoretical studies of spin injection through the interface of a ferromagnetic conductor and semiconductor with a δ-
doped layer near the interfacewere carried out in Refs. [960–963]. In these studies, it was assumed that the depletion region
is only a few nanometers and the tunneling electrons do not lose their spin polarization over this region. By assuming that
the depletion region is of a triangular shape, a direct tunnel current was calculated and the transport outside the depletion
region was performed using the drift-diffusion model. Unlike the traditional drift-diffusion model, the spin polarization of
the tunneling carriers depends on the band structure of the ferromagnetic conductor, but is independent of the transport
properties of the ferromagnetic metal. Hence, there is no conductance mismatch in this model, and it is possible to achieve
high spin polarization at the interface. Moreover, it was shown that the spin injection efficiency is not constant but strongly
depends on the injection current, the larger the current amplitude, the higher the injection efficiency. In order to achieve a
high efficiency, a high electric field is required and therefore the injection length also increases with the injection current,
as predicted by Eq. (276) [960–963]. However, the applied electric field also enhances the Rashba spin–orbit coupling and
reduces the injected spin polarization, as pointed out byWang andWu [952]. Recent experiments by Kum et al. showed that
the competing effects of the electric field cancel each other, leading to an almost negligible decrease of magnetoresistance
with bias current [967].

6.4. Spin detection and experimental study of spin transport

The experimental study of spin transport also requires an effective method to extract the spin information from
semiconductors. In some senses, spin detection and extraction are the reverse of spin generation and injection. Each spin
generation/injectionmechanismcan also be reversely used to extract the spin information. Generally speaking, there are two
categories of spin detection: optical and electrical spin detection. Optical spin detection, such as the Faraday/Kerr rotation
and circular polarization of electroluminescence, provides reliable information of spin polarization in semiconductors and
has been proven to be a powerful experimental tool in the study of the spin transport. Whereas high efficiency electrical
spin detection is essential to the spin transistor.

6.4.1. Spin detection using electroluminescence
Electroluminescence is the reverse of the optical orientation. In the usual electroluminescence experiment setup, the

electrons (holes) to be detected are driven to a structure such as a light emitting diode where they recombine with
unpolarized holes (electrons) and emit photons. Due to the selection rule, the emitted photons are circularly polarized if the
carriers to be detected are spin polarized. By measuring the polarization of the electroluminescence, one obtains the spin
polarization. This technique was employed in the first experimental observation of spin injection from the ferromagnetic
nickel tip of a scanning tunneling microscope into nonmagnetic p-type GaAs, and an injected spin polarization of about 40%
at the surface was reported [968]. However, the early attempts on high spin injection efficiency in real devices were not so
successful due to spin–flip scattering at the interface and the conductance mismatch [907,908]. Spin polarization injected
from traditional ferromagnetic metals, such as Fe, Ni, Co and their alloys, into GaAs or InAs was usually only a few percent
[969–971]. By various means, the spin injection efficiency has been improved over the years. Here we list some important
results in the following, loosely cataloged by the structures used in the experiments.

• Spin injection from ferromagnetic or diluted magnetic semiconductors into GaAs: Ferromagnetic or diluted magnetic
and nonmagnetic semiconductors have a similar conductance, therefore spin injection in these structures surfers a lower
conductance mismatch. However, since a ferromagnetic semiconductor has a low Curie temperature, the experiments
are usually performed at low temperature. Spin injection from n-type II-V diluted magnetic semiconductors into n-GaAs
under an applied magnetic field is very efficient. Injected spin polarization from BexMnyZn1−x−ySe into GaAs achieves
90% at low temperature (< 5 K), but drops to 20% when the temperature rises to 35 K [522,972]. Spin injection from
p-type GaMnAs or MnAs into n-type GaAs is more difficult. The efficiency of direct spin injection from GaMnAs or MnAs
into n-type GaAs is usually only a few percent even at low temperature [973–975]. Injection from GaMnAs or MnAs via
interband tunneling in an Esaki diode is much more efficient [976–983]. 80% injected spin polarization in an Esaki diode
has been realized when the temperature is 10 K [982]. The Molenkamp group has proposed and demonstrated the use of
a magnetic double barrier resonant tunneling diode as a spin injector [984–988]. A spin polarization up to 80% has been
injected from BeTe/Zn1−xSe/BeTe into GaAs at 1.6 K temperature and 7.5 T magnetic field [984].92

• Spin injection from a traditional ferromagnetic metal through a Schottky barrier into GaAs or AlGaAs: By constructing
a Schottky barrier with a narrow depletion regime at the interface of the ferromagnetic metal and semiconductor, spin
injection efficiency is greatly improved [974,989–993]. An injected spin polarization of 30% from Fe into GaAs at room
temperature was reported [992].

92 It is noted that the direction of the spin polarization through a magnetic double barrier resonant diode can be changed by an external voltage which
selects the spin dependent resonant tunneling level [984–988]. This is quite different from the spin injection from a ferromagnetic material where the
injected spin polarization is the same as the majority spin of the injector. To change the spin direction injected from the ferromagnetic injector, a magnetic
field should be applied to change its spin direction. While using a magnetic double barrier resonant diode, it can be achieved electrically.
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• Spin injection from a traditional ferromagnetic metal through an insulator layer into GaAs or AlGaAs: By inserting
an insulator tunneling layer, the injected spin polarization can be further increased. The tunneling layer improves
the surface condition by preventing the magnetic atoms from diffusing into the semiconductor and thus reduces the
spin–flip scattering at the interface. Moreover, this tunneling layer can be regarded as a spin-selective contact with
low conductance and hence reduces the conductance mismatch [22,907,908,927,934]. Typical tunneling layers are
composed of AlOx [994–997] and MgO [998–1006], although GaOx has also been used to improve the charge injection
efficiency [1007]. Using AlOx as the tunneling layer [994–997], the injection efficiency can achieve 40% when the
temperature is lower than180K [996,997]. TheMgO tunneling layer is evenmore efficient in improving the spin injection.
Due to the band structures and symmetry, tunneling from Fe, Co and their alloy through a MgO barrier is strongly spin
selective. The conductance of the majority spin is orders of magnitude higher than that of the minority spin [999,1008–
1011]. In this case, the injected spin polarization is determined by the tunneling spin polarization. An injected spin
polarization of 70%–80% from a CoFe electrode through a MgO layer into GaAs at room temperature was reported [998,
1001].
• Spin injection from Heusler alloys into GaAs or AlGaAs: In addition to the spin injection from traditional ferromagnetic
metals, there are also experiments on using Heusler alloys (some of them have been predicted to be half-metals [1012,
1013]) as a spin injector in the hope that both high spin and charge injection efficiencies can be realized [1014–1018].
Over 50% injection efficiency from the Heusler alloy Co2FeSi into GaAs up to 100 K has been demonstrated [1017].

The electroluminescence technique has also been used to demonstrate that spin polarized carriers can be injected and
sustain the polarization over amicroscopic distance by constructing the light emitting diode structure away from the surface
of ferromagnetic and nonmagnetic conductors [522,523,946,958,970,975,976,1019,1020] or away from the optical injection
position [1021]. Considering the optical absorption of the semiconductor, the photon emitted at a position away from the
surface should be weighted as exp[−α(λ)x]. Further combined with the fact that absorption coefficient is wavelength
dependent, the experimental measurement of the wavelength dependence of the electroluminescence polarization was
used to estimate the spin injection length [1022].

6.4.2. Spin imaging
Spin detection using the Faraday/Kerr effect measures the Faraday/Kerr rotation angle of transmitted/reflected linearly

polarized photons. These angles are proportional to the spin component (magnetization) along the direction defined by
the propagation of a probe light beam [748], and thus provide direct information of the magnetization along this direction.
Usually the probe light is nearly normal to the sample surface, therefore only themagnetization normal to the surface can be
directly measured by this technique. The information of spin coherence can be obtained by applying an in-plane magnetic
field to rotate the in-plane spin component to the normal direction. The recently developed tomographic Kerr rotation
technique further enables the measurement of the spin coherence in any direction [500,1023].
By moving the focus of the probe light and performing the measurement at different times, one obtains the spatial and

temporal resolved information of the spin polarization, and thus images the transport of spin polarization. Typical schemes
of experiment setups and results for spin imaging are shown in Fig. 105. In the experiments, spin polarized carriers are
usually injected from ferromagnetic films into the semiconductor. Depending on the experimental setup, the probe laser
can be focused on the top surface of the semiconductor (left side of Fig. 105) [5,30,31,527,910,1024,1026] or on the side-
surface (right side of Fig. 105) [1025]. Since the easy axis of the ferromagnetic film is usually parallel to the film plane, an
in-plane magnetic field is required to rotate the injected spin to the normal of the surface [30,31,527,910,1024,1026]. In the
side-surface scanning experiments, the easy axis of the ferromagnetic film can be arranged to be parallel to the probe laser,
and nomagnetic field is required [1025]. The spin polarized electrons in the ferromagnetic electrode are driven through the
interface into the semiconductor at low temperature. The polarization of the injected spin is estimated to be a few percent.
Spin transport over macroscopic distance (>1 µm) has been clearly demonstrated by these experiments [30,31,527,910,
1024–1026]. The spin image technique has also been adopted to study the spin accumulations caused by the extrinsic spin
Hall effect [7–10,1027–1035].

6.4.3. Electrical spin detection
There are also many works on all electrical spin injection/transport/detection. The simplest electrical spin detection

method utilizes themagnetoresistive effect by driving the spin polarized carriers from a ferromagnetic electrode on one side
across the interface to a semiconductor and extracts the spin using another ferromagnetic electrode on the other side, as in
the Datta–Das transistor. Due to the spin-valve effect, the resistances should be different when the spin momentum of the
left electrode is parallel and anti-parallel to that of the right electrode if the spin polarization injected from the left electrode
survives at the right electrode. This effect is quantitatively characterized by magnetoresistance, the relative change of the
resistance when the magnetic momentums change from parallel to anti-parallel alignments. Early works using this simple
ferromagnetic/nonmagnetic/ferromagnetic sandwich structure indeed showed that the resistance does have a hysteresis
loop when an magnetic field is applied to change the direction of the magnetic momentum on the right electrode [969,
1036,1037]. Due to the conductance mismatch, the magnetoresistance of the ferromagnetic/semiconductor/ferromagnetic
structure is not very large, usually less than 1% for ohmic ferromagnetic metal/semiconductor contact [969,1036,1037]. For
a system suffering less from the conductance mismatch, a magnetoresistance of 8.2% in a MnAs/GaAs/Ga:MnAs structure
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Fig. 105. Schematic experiment setup for spin imaging of electrical spin injection. Left: Surface scanning, an in-plane magnetic field is applied to rotate
the injected spin to out-of-plane for the Kerr rotation measurement. From Crooker et al. [1024]; Right: Side-surface scanning. From Kotissek et al. [1025].

has been achieved at low temperature [1038]. However, since the magnetoresistance in this structure is usually low and
the spin polarized current flows through a ferromagnetic electrode, the spin accumulation signal can be masked by other
magnetoresistance effects, such as the anisotropic magnetoresistance of the magnetic electrode and a local Hall effect
caused by the fringe magnetic field near the contact [1039–1043]. These direct measurements of the spin valve effect in
the sandwich structure are not decisive.
A more sophisticated all electrical spin detection is to use the non-local spin-valve effect [281,940–946], first proposed

by Johnson based on the Silsbee–Johnson spin charge coupling [905,938,940,941]. The schematic of the non-local spin-valve
setup used in the experiment by Lou et al. is represented in Fig. 106. In the experiment different contacts are grown on top
of a GaAs layer. The spin polarized electrons are driven to form a spin polarized current flow between contacts 1 and 3,
while the non-local voltage between contacts 4 and 5 is measured. Due to Silsbee–Johnson spin charge coupling, if there
is a spin accumulation at the interface of the GaAs layer and contact 4, a change in the non-local voltage can be detected
when the direction of magnetization in contact 4 changes. This non-local geometry separates the injection and detection
paths and thus avoids or reduces the spurious effects caused by the other magnetoresistance effects. Using this technique,
clearer signals of spin accumulation were demonstrated through hysteresis loop behavior in the resistance change with the
magnetic field [281,942–946,1044]. More recently, Koo et al. employed this method to demonstrate the oscillatory channel
conductance due to gate voltage controlled spin precession [55]. This experiment is of particular interest since it is claimed to
be the first experimental realization of electric spin injection, spin detection and coherent spin manipulation in one device,
although there is some controversy on the claim [916–918].

6.4.4. Spin transport in silicon
Spin related phenomena in silicon have also attracted much attention recently because of the long spin lifetime in

silicon and the compatibility to the current industrial semiconductor technologies [149,150,279,280,282,290,291,295,776,
781,1045–1057]. A major difficulty for studying spin related properties in silicon is spin generation and detection. Optical
spin generation/detection is not effective since silicon is an indirect-band semiconductor [21,1045]. Early studies on the
Faraday/Kerr effects in silicon were limited to very narrow frequency ranges in the microwave or infrared region [1058–
1060]. Although the limitation was lifted by using terahertz time domain spectroscopy [1061,1062], which covers a wider
frequency range, spin detection using the Faraday/Kerr rotation has yet to be conducted. There are a few experiments using
electroluminescence to obtain the information of the spin polarization in silicon [279,282]. By constructing surface-emitting
light emitting diodes with n–i–p silicon layers, Jonker et al. demonstrated the electrical spin injection from Fe through
an Al2O3 layer into n-type silicon. The injected spin polarization under 3 T magnetic field was estimated to be 30% at
5 K, with significant spin polarization extending to at least 125 K [282]. Using a fully strained Si0.7Ge0.3 quantum well to
replace the intrinsic silicon layer, Grenet et al. demonstrated electrical spin injection from CoFe into n-type silicon at zero
magnetic field [279]. Their experimental setup and results are shown in Figs. 107 and 108. The advantage of the strained SiGe
quantumwell over bulk silicon is the appearance of the direct optical transition through the so called non-phonon transition
[1063–1065]. Due to the non-phonon transition and its phonon replica [1065], radiative recombination in a SiGe
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directions) for sample A at a current I1,3 = 1.0 mA at T = 50 K. The raw data are shown in the upper panel, the lower panel shows the data with this
background subtracted. (c) Non-local voltage, V4,5 , versus perpendicular magnetic field, Bz , for the same contacts and bias conditions as in (b). The data in
the lower panel have the background subtracted. The data shown in black are obtained with the magnetizations of contacts 3 and 4 parallel, and the data
shown in red are obtained in the antiparallel configuration. From Lou et al. [944].

Fig. 107. (a) Schematic device structure of the SiGe spin light-emitting diode with the Co/Pt ferromagnetic top electrode and (b) associated simplified
band diagram under bias in the injection regime. From Grenet et al. [279].

quantum well is much faster than that in silicon. The radiative relaxation time in a SiGe quantum well is about tens
of nanoseconds [279] compared to hundreds of microseconds in silicon [282,1066,1067]. Moreover the presence of
germanium and stress also enhances the spin–orbit coupling and raises the circular polarization of the emitted light from
the recombination of the spin polarized electrons with holes [1068–1070]. These factors improve the efficiency of the
electroluminescence. Using this structure to detect the electrical spin injection from CoFe into silicon, as shown in Fig. 108,
circular polarization of 3% was achieved at 5 K and remained almost constant up to 200 K at zero magnetic field [279].
Most spin related experiments in siliconuse electrical injection/detection [149,150,280,1047–1057,1071]. Robust electric

spin injection through a hot-electron spin valve [149,150,279,280,282,1047–1053] or Schottky tunneling barrier contact
[281,1057,1072,1073] into silicon has been proposed and realized. The schematic electronic band diagram and experimental
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Fig. 108. (a) Electroluminescence spectra recorded at 5 K and 77 K for a saturated remanent state of the ferromagnetic Co/Pt contact. The applied voltage
and current are respectively around 10 V and 10 mA. The no-phonon (NP) peak is clearly circularly polarized indicating an efficient spin injection into the
silicon top layer. The transverse optical (TO) phonon replica is also slightly circularly polarized. (b) Electroluminescence circular polarization recorded at
the maximum of the non-phonon line for different remanent states of the Co/Pt layer (red dots). From Grenet et al. [279].

setup of spin injection and detection using the hot-electron spin valve are shown in Fig. 109: Driven by the voltage
VE , unpolarized electrons are injected from the nonmagnetic emitter (Al electrode in the original experiment) into the
ferromagnetic base (FM1) through a tunneling barrier. FM1 base acts as a spin filter in which electrons with majority spin
pass through the Schottky barrier into silicon ballistically, but electrons with minority spin can not pass as they quickly
lose energy in the FM1 base due to the spin selective scattering. Under the voltage Vc1, electrons transport inside the silicon
and arrive at the second ferromagnetic layer (FM2). FM2 serves as a spin detector and makes the current Ic2 depend on the
current spin polarization by allowing only electrons with the majority spin of FM2 pass through into the second collector.
The alignment of the magnetic momentum of FM1 and FM2 can be changed by an in-plane magnetic field. The success of
spin injection is demonstrated by the spin valve effect and the Hanle effect, shown in Fig. 110. The spin valve effect, that is
the change in the spinmomentum alignments of FM1 and FM2 results in the change in Ic2, is quantitatively described by the
magnetocurrent, (IPc2 − I

AP
c2 )/I

AP
c2 , the relative change in the current when the alignment of magnetizations in FM1 and FM2

changes. A 2% magnetocurrent was observed in the original experiment [150]. By relocating the ferromagnetic bases away
from silicon interfaces to eliminate the ‘‘magnetically-dead’’ silicide layer [1074–1076], the magnitude of magnetocurrent
was substantially increased by more than one order of magnitude [280,1049]. To further confirm that the change in Ic2 is
indeed caused by the spin valve effect instead of other spurious effects, non-local spin detection was also used [281]. More
conclusive results showing the spin precession and spin dephasing were obtained: A perpendicular magnetic field, which
rotates the injected spin, changes the relative alignment of the injected spin and spin in FM2. As a result Ic2 oscillates with
the strength of the perpendicular magnetic field [149,150,280–282,1047–1053].
Due to the spin relaxation and the interference of the spin precession around the magnetic field [25,336,846,1051], the

injected spin polarization decays with the distance. The spin injection length decreases with the increase of the magnetic
field, and was shown to become very small when the magnetic field becomes slightly strong [150]. Since Ic2 is proportional
to the spin polarization at FM2, Ic2 also decreases with themagnetic field. This decay, first predicted byWeng andWu [336],
fully microscopically, was explained by the Hanle effect in Ref. [150].

7. Microscopic theory of spin transport

In Section 6, the phenomenal theory of spin transport based on the drift-diffusion model is reviewed. In that model,
all characteristic parameters such as the mobility µ, diffusion coefficient D in spin transport, and spin relaxation time τs
can not be determined within the framework of the model, but rather need to be experimentally measured or calculated
from another theoretical model. It is usually assumed thatµ and D are simply the charge mobility and diffusion coefficient.
However, there is no reason that these assumptions should be universally true, aside from naïve intuition, and the relations
between the characteristic parameters of charge transport and spin transport remain yet to be revealed. In the presence
of spin–orbit coupling, the charge transport and spin transport are coupled. A fully microscopic theory is essential to
understand this coupled transport. In this section, we will review spin transport inside the semiconductor from the fully
microscopic point of view. The main results reviewed in this section are also based on the kinetic spin Bloch equation
approach. The equations have been laid out in Section 5, but in Section 5 we focused on reviewing the results of the spatially
uniform system. The results reviewed in this section are focused on the spatially nonuniform system. There are several
related works based on the linear response theory [35,1077] and kinetic theory93 [1078–1085], whose results will also be
briefly addressed.

93 Equations of this theory are the same as the kinetic spin Bloch equations but without the electron–electron Coulomb interaction.
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Fig. 109. Schematic electronic band diagram (a) and experimental setup (b) of the hot-electron spin valve. From Appelbaum et al. [150].

7.1. Kinetic spin Bloch equations with spatial gradient

The kinetic spin Bloch equations for the spin kinetics in the presence of spatial inhomogeneity are given by Eqs. (155)–
(162). The electric field E in these equations is determined from the Poisson equation (Eq. (273)). As pointed out in
Section 5.3, the kinetic spin Bloch equations include all the factors important to the spin dynamics, including the drifting
driven by an electric field, diffusion due to the spatial inhomogeneity, spin precession around the total magnetic field aswell
as all the relevant scatterings. By solving these equations, all the measurable quantities, such as mobility, charge diffusion
length, and spin diffusion length, can be obtained self-consistently without any fitting parameter.
More importantly, from this fully microscopic approach, some important issues overlooked by the phenomenological

drift-diffusionmodel are recovered.Weng andWu [336] performed the first fullymicroscopic investigation on spin diffusion
and transport by setting up and solving the kinetic spin Bloch equations. Unlike the previous spin transport theories [907,
908,927–929,1086–1088] where only the diagonal elements of the density matrix ρσσ (r, k, t) are included in the theory,
they showed that it is of crucial importance to include the off-diagonal terms ρσ−σ (r, k, t) in studying the spin diffusion
and transport [25,336]. They predicted spin oscillations in a GaAs quantum well along with spin diffusion in the absence
of any applied magnetic field [24,25]. These oscillations were later observed in experiments [31,567]. The spin oscillations
without any appliedmagnetic field are beyond the two-current drift-diffusionmodelwidely used in the spin transport study
[22,907,908,927–929,1086–1088]. Moreover, by introducing the off-diagonal terms, Weng andWu showed that there is an
additional inhomogeneous broadening associated with the spatial gradient of the spin polarization [25,28,336]. As shown in
Eq. (157), the coefficient of the spatial gradient is proportional to∇kε̄k(r, t), which ismomentumdependent. It does not lead
to any significant results for charge transport aside from the diffusion in space. However, when there is spin precession this
momentum-dependent coefficient introduces an additional inhomogeneous broadening since the spatial spin precession is
momentum dependent [25,28,336]. This inhomogeneous broadening, combined with any spin-conserving scattering, leads
to an irreversible spin relaxation and dephasing in the spin transport.
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a

b

Fig. 110. (a) In-plane spin-valve effect for the silicon spin transport device with emitter tunnel junction bias VE = −1.6 V and VC1 = 0 V at 85 K. (b) Spin
precession and dephasing (Hanle effect), measured by applying a perpendicular magnetic field. From Huang et al. [1049].

In the following subsections, we will first present some simplified cases where analytical results can be obtained. Then
we review the numerical results from the kinetic spin Bloch equations.

7.2. Longitudinal spin decoherence in spin diffusion

The importance of the off-diagonal terms of the density matrix in the study of spin transport can be qualitatively
understood by studying the spin diffusion in a GaAs quantum well in a much simplified case where there is no electric
field, no scattering and no Hartree–Fock self-energy. Assuming that the transport is along the x-direction, in the steady
state, the kinetic spin Bloch equations (Eqs. (155)–(162)) can be simplified as

kx
m∗

∂ρ(x, k, t)
∂x

+ i
[
h(k) ·

σ

2
, ρ(x, k, t)

]
= 0. (297)

In order to avoid the complexity of the spin injection, it is assumed that the electron at x = 0 is polarized along the z-axis,
and the boundary conditions are written as

ρ(0, k) =
(
f 0
↑
(k) 0
0 f 0

↓
(k)

)
, (298)

where fσ (0, k) = f 0σ (k) = {exp[(εk − µσ )/T ] + 1}
−1 is the Fermi distribution function with chemical potential µσ . The

solution to this equation in the steady state reads [28]

ρ(x, k) = e−i(m
∗/2kx)h(k)·σxρ(0, k)ei(m

∗/2kx)h(k)·σx. (299)
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Fig. 111. Electron densities of up spin and down spin (solid curves) and incoherently summed spin coherence ρ (dashed curve) versus the diffusion length
x in an n-type GaAs quantum well without spin–orbit coupling but with B = 1 T. Note the scale of the spin coherence is on the right side of the figure.
FromWeng and Wu [336].

This equation describes the spatial spin precession around the total magnetic field h(k). For an electron with momentum k,
the precession period is characterized by

ω(k) = h(k)m∗/kx. (300)

h(k) = gµBB+�(k)with�(k) being the D’yakonov–Perel’ term. Eq. (299) clearly shows the effect of the inhomogeneous
broadening in the spatial spin precession on the spin transport. For each electron moving along the x-direction with fixed
velocity vkx = kx/m

∗, its spin precesses with fixed spatial period without any decay. However, electrons with different
momentums have different spatial precession periods and can have different precession axes if the Dresselhaus and/or
Rashba terms are present. As a result, spins of different electrons eventually become out of phase and cancel each other as
theymoving along the transport direction. Due to this interference among electrons of different k, the total spinmomentum
decays along the diffusion distance. Comparing with the spin kinetics in the time domain, where the inhomogeneous
broadening is determined by inhomogeneity in the precession frequencies and the direction determined by h(k) [44,
332,334,363,372], in spin transport it is determined by the inhomogeneity in the spatial oscillation ‘‘frequency’’ and the
direction given by ω(k) in Eq. (300) [25,28,336]. Even for a uniform magnetic field in the Voigt configuration, which does
not induce any inhomogeneous broadening in the time domain, the spatial precession ‘‘frequencies’’ω(k) are still different
for different electrons. Therefore, a spatially uniform magnetic field alone can provide an inhomogeneous broadening in
the spin transport, as first pointed out by Weng and Wu back in 2002 [25,336]. This effect is illustrated in Fig. 111, where
the electron densities Nσ in a GaAs quantum well subject to a uniform in-plane magnetic field are plotted as functions of
position x. In order to demonstrate the effect of this new inhomogeneous broadening, the spin–orbit coupling is assumed to
be zero. One can clearly see the decay in spin polarization due to the inhomogeneous broadening caused by the difference
in spatial precession periods. The stronger themagnetic field is, the quicker the spin polarization decays [25,336]. It is noted
that although the inhomogeneous broadening alone can reduce the total spin momentum, it is just an interference effect.
There is no irreversible loss of spin coherence since there is no scattering (hence no true dissipation) in the system. This
can be seen from the fact that the incoherently summed spin coherence ρ, also plotted in Fig. 111, does not decay with the
position. It should be pointed out that this additional spin decoherence is beyond the Hanle effect since for the latter the
spin signal does not decay when there is no scattering, according to Eq. (282).
When the scattering is turned on, it provides a channel which combined with the inhomogeneous broadening leads

to irreversible spin dephasing [44,332,334,350,569,844]. As a result both spin polarization and spin coherence decay
with the distance [24,25,27,28,336,846]. Similar to the spin evolution in the time domain, the scattering also has a
counter effect that suppresses the inhomogeneous broadening in ω(k) given by Eq. (300) [225,226,334,837–840]. The spin
dephasing/relaxation mechanism in spin transport has been realized experimentally by Appelbaum et al. [149,150,280,
1047–1052] in bulk silicon, where there is no D’yakonov–Perel’ spin–orbit coupling due to the center inversion symmetry.
For spin transport in bulk silicon in the presence of a magnetic field, the decay of the spin polarization should be mainly
caused by the above mentioned inhomogeneous broadening if other spin-relaxation mechanisms are ignored. Moreover,
the inhomogeneous broadening in this situation is particularly simple since all electrons have same precession axis, the
only difference is the magnitude of the spatial precession frequenciesωk given by Eq. (300). Therefore bulk silicon provides
an ideal platform to study this spin relaxation/decoherence due to the additional inhomogeneous broadening. As shown
in Fig. 110, the spin injection length indeed decreases with the magnetic field, consistent with the theoretical prediction
[25,28,32,846].



196 M.W. Wu et al. / Physics Reports 493 (2010) 61–236

Although the full kinetic spin Bloch equationswith scattering are complicated, one can still obtain some analytical results
under some approximations [25,28,32,846,915]. Assuming that there are no applied electric field, inelastic scattering and
the Hartree–Fock term, the kinetic spin Bloch equations for spin transport along the x-axis can be written as [25,28,32,846]

∂ρ l(x, k, t)
∂t

+
vk

2
∂

∂x
[ρ l+1(x, k, t)+ ρ l−1k (x, k, t)] = −i

∑
m

[hl−m(k) · σ/2, ρm(x, k, t)] − ρ l(x, k, t)/τ lk, (301)

where vk = k/m∗ is the velocity of the electron with momentum k. ρ l(x, k, t) and hl(k) are the l-th order of the Fourier
components of ρ(x, k, t) and h(k)with respect to the angle of k and the x-axis, respectively. τ lk is the l-th order momentum
relaxation time due to the electron–impurity scattering. Note that 1/τ 0k = 0 and τ

l
k = τ

−l
k .

In the diffusive limit where the momentum relaxation time is small, the higher order components ρ l(x, k, t)with |l| > 1
are small and can be neglected. If there is no spin–orbit coupling and the applied magnetic field is along the y-axis, by
neglecting higher order Fourier components with |l| > 1, in the steady state the kinetic spin Bloch equations can be
simplified as [846]

∂2ρ0(x, k)
∂x2

= −2
(
ω

2vk

)2
[σy, [σy, ρ

0(x, k)]] + i
ω

v2kτ
1
k
[σy, ρ

0(x, k)], (302)

where ω = gµBB is the spin precession frequency in the time domain under a uniform magnetic field B. In term of the spin
momentum, the solution to this equation for the spin injection at x = 0 is a damped oscillation

Sz(x, k) = Sz(0, k) cos
(

x
vkτ

1
k∆

)
e−xω∆/vk (303)

with

∆ =

(√
1+

1
(ωτ 1k )

2
− 1

)−1/2
. (304)

At low temperature, when the injected spin is only polarized at the Fermi level, the spin injection length L−1d = ω∆/vf ,
with vf standing for the Fermi velocity. The injection length obtained here decreases monotonically with the increase of
magnetic field and scattering strength. Therefore, the scattering enhances the spin dephasing/relaxation in spin diffusion.
The counter effect of the electron–impurity scattering on the inhomogeneous broadening here is not significant [846].

7.2.1. Spin diffusion in Si/SiGe quantum wells
In order to gain a deeper insight into the spin relaxation along the spin diffusion caused by the additional inhomogeneous

broadening addressed in the previous subsection, Zhang andWu studied the spin transport in a symmetric silicon quantum
well with an even number of monoatomic silicon layers through the kinetic spin Bloch equation approach [846]. There is
no D’yakonov–Perel’ spin–orbital coupling in this kind of quantum well [291]. Since the Rashba term is very small in the
asymmetric Si/SiGe quantum well [124,290,291,295,776,781], it was argued that their results also hold for the asymmetric
Si/SiGe quantum wells as long as the D’yakonov–Perel’ term is weak enough [846].
The kinetic spin Bloch equations in the (001) Si/SiGe quantum well are similar to those in the GaAs quantum well [846].

In the equations the drifting under the electric field, diffusion due to the spatial inhomogeneity and precession around
the magnetic field (including the contribution of the Hartree–Fock term), as well as the spin-conserving scattering are
all addressed. Numerical solutions of the full kinetic spin Bloch equations for spin transport in a silicon quantum well at
T = 80 K with different scattering mechanisms and under different magnetic fields are shown in Figs. 112 and 113.
Fig. 112 clearly shows that the spin injection length decreases with increasing magnetic field, in accordance with the

prediction by Weng and Wu [25,336]. This result is easy to understand since ωk = m∗gµBB/kx is proportional to the
magnetic field. An increase of the applied magnetic field results in an increase of inhomogeneous broadening.
Fig. 113 shows the effect of scattering on the spin diffusion. It is seen from the figure that adding any new scattering

leads to a shorter spin diffusion length. This is quite different to the results in the system with the D’yakonov–Perel’
spin–orbit coupling. When the D’yakonov–Perel’ spin–orbit coupling is present, the scattering not only opens a spin
dephasing/relaxation channel, but also has a counter effect on the inhomogeneous broadening [25,28,29,363,1089]. In
the strong scattering limit, adding a new scattering suppresses the inhomogeneous broadening and prolongs the spin
diffusion length [25,28]. However, for the system without the D’yakonov–Perel’ spin–orbit coupling, the counter effect of
the scattering on the inhomogeneous broadening is marginal. The scattering affects the spin diffusion only through the
momentum relaxation time and hence only reduces the spin injection length as shown by Eqs. (303) and (304) [846].
The electron density dependence of the spin diffusion was also investigated at different temperatures. It was found

that at relatively high temperature or low density, when the electrons are nondegenerate, the spin diffusion length and
spatial precession period are insensitive to the electron density. At low temperate or high density when the electrons are
degenerate, the spin diffusion length and spatial precession period increasewith increasing density. This is understood from
the Fermi wavevector dependence of the damping rate and precession period, as shown in Eqs. (303) and (304).
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Fig. 112. Spin polarization Sz vs. position x in the steady state for an intrinsic silicon quantum well under different magnetic field strengths. Solid curve:
B = 2 T; Dashed curve: B = 1 T; Dotted curve: B = 0.5 T. T = 80 K and Ni = 0.1N0 . From Zhang and Wu [846].

Fig. 113. The steady-state spatial distributions of spin signal Sz in a silicon quantumwell with different scatterings included. The curves labeled with ‘‘EE’’,
‘‘EP’’ or ‘‘EI’’ stand for the calculations with the electron–electron, electron–phonon or electron–impurity scattering, respectively, while the curve labeled
with ‘‘EI + EE + EP’’ stands for the calculation with all the scatterings. In order to get a clear view of the decay and precession of Sz , the corresponding
absolute value of Sz against x is also plotted on a log-scale (Note the scale is on the right hand of the frame). The dashed curves correspond to the part with
Sz < 0. From Zhang and Wu [846].

7.3. Spin oscillations in the absence of magnetic field along the diffusion

When the D’yakonov–Perel’ term is present, the problem becomes more complicated, since in this case both the spatial
precession frequencies and axis are momentum dependent. Studies of spin transport in the system with the spin–orbit
coupling from the kinetic spin Bloch equation approach have predicted many novel results [25,27,28,32,336,846]. Some of
them have been verified experimentally [31,567].
One interesting result is the spin oscillation in the absence of any applied magnetic field along the spin diffusion when

the Dresselhaus and/or Rashba terms are present. In the spatially homogeneous system, spin oscillationwithout any applied
magnetic field can only be observed in the time domain at very low temperature (T < 2 K), i.e., in the weak scattering
limit [368]. In the high temperature regime, where scattering is strong enough, the Dresselhaus and/or Rashba terms result
in a monotonic decay of spin polarization versus time in the spatially uniform system. If one adopts a simple relaxation
approximation to describe the effect of the spin–orbit coupling, one should not expect any spin oscillation in the diffusive
limit where the scattering is strong enough. Indeed, from the drift-diffusion equation Eq. (275), there is no spin oscillation
either in spin injection in the steady state or in transient spin transport if the applied magnetic field is absent.
However, according to the kinetic spin Bloch equation approach, in the spin transport the spatial spin precession

is characterized by ωk (Eq. (300)). If one only considers the Dresselhaus effective magnetic field, the average of ωk is
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〈ωk〉 = m∗γ (〈k2y〉 − 〈k
2
z 〉, 0, 0). For electrons in a quantumwell, this value is not zero. Therefore, the spatial spin oscillation

due to the Dresselhaus effective magnetic field survives even at high temperature when the scattering is strong enough.
By solving the kinetic spin Bloch equations, the spin oscillation without any applied magnetic field was first predicted

in the transient diffusion of a spin pulse in GaAs quantum wells [24,25,27]. A typical time evolution of spin pulse is shown
in Fig. 114 where the absolute value of the spin imbalance |∆Nσ (x, t)| is plotted as a function of the position x along the
diffusion direction and time t . The initial state is a spin pulse of Gaussian spatial profile, ∆N(x, 0) = ∆N0 exp(−x2/δx2)
with δx = 0.15 µm. For comparison, the result based on the drift-diffusion model is also shown. One can see that the
kinetic spin Bloch equation approach and the drift-diffusion model give qualitatively similar results for the evolution at the
center of the pulse, where it decays monotonically with time as a result of spin diffusion and spin dephasing. However,
the results from these two theories are quite different for the evolution outside the original spin pulse. The result from the
drift-diffusion model shows that spin polarization at large x first increases with time and then decays to zero. The sign of
the spin polarization does not change throughout space and time. On the contrary, the kinetic spin Bloch equation theory
predicts that spin polarization oscillates with time. The oscillation is the combined result of the spin precession caused by
the Dresselhaus effective magnetic field and the spin diffusion.
The evolutions of spin pulses with different pulse widths are shown in Fig. 115. Since the oscillation is a result of

diffusion and spin precession around the effective magnetic field, the system with a narrower spin pulse shows stronger
spin oscillation in the transient spin transport. For the narrower pulse, the peak of the reversed spin polarization appears in
a shorter time. Moreover, more oscillation can be observed with a narrower pulse [27].
The effects of the scattering and the electric field on the oscillation without any magnetic field were also studied.

It was shown that the oscillation is robust against the scattering. Adding the electron–impurity scattering slows down
the diffusion but does not eliminate the oscillation. In some regimes, the electron–impurity scattering even boosts the
oscillation, as it helps to sustain the spin coherence [24,27]. The Coulomb scattering has a similar effect on the spin diffusion
and oscillation [27]. Without any electric field, the spin signals diffuse symmetrically in the space around the original pulse
center. When an electric field is applied along the diffusion direction, the diffusion is no longer symmetrical. The pulse is
dragged against the electric field and a stronger opposite spin polarization appears at the side against the electric field [27].
The spin oscillationwithout any appliedmagnetic field in the transient spin transport was later observed experimentally

by Crooker and Smith in a strained bulk system [31], which is shown in Fig. 116. Unlike the two-dimensional case, in bulk
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the average ofωk from the Dresselhaus term is zero, since 〈ωk〉 = m∗γ (〈k2y〉−〈k
2
z 〉, 0, 0) = 0 due to the symmetry in the y-

and z-directions. This is consistent with the experimental result that there is no spin oscillation for a systemwithout stress.
However, when the stress is applied, an additional spin–orbit coupling, namely the coupling of electron spins to the strain
tensor, appears [3,31,130,246,570,1090,1091]. This additional spin–orbit coupling also acts as an effective magnetic field.
In the experiment setup, the stress applied is along the [110] axis, the spatial oscillation caused by this additional effective
magnetic field is characterized by

〈ωk〉 = −c3εyx(0, 1, 0), (305)

where c3 is a constant depending on the interband deformation potential and εyx is the in-plane shear [3,31,130,246,1090,
1091]. Therefore, once the stress is applied, one can observe the spatial spin oscillation, as shown in Fig. 116, even when
there is no applied magnetic field.
The spin oscillation without any applied magnetic field was later shown theoretically to survive even in the steady state

spin injection [28,35,949–954].
The oscillationwithout an appliedmagnetic field can also be understood from the simplified kinetic spin Bloch equations

Eq. (301). In the diffusive limit, by neglecting high orders of the momentum relaxation time, Eq. (301) can be further
simplified as

∂S(x, t)
∂t

= D
∂2S(x, t)
∂x2

− h̄×
∂S(x, t)
∂x

−
←→
Γ S(x, t) (306)

in a (001) GaAs quantum well where the dominant spin–orbit coupling is the Dresselhaus term. Here S(x, k, t) =∑
k Tr{σρ0(x, k, t)} is the spin momentum. D = 〈k2τ 1k /2m

∗2
〉 is the diffusion coefficient.

h̄ = 〈k2τ 1k /m
∗
〉(α, 0, 0), (307)
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a b

Fig. 117. Effect of the scattering on spin diffusion in the steady state at (a) T = 120 K and (b) T = 300 K in a GaAs quantum well with a = 7.5 nm. Red
curves: with only the electron–longitudinal-optical-phonon (EP) scattering; Green curves: with both the electron–electron (EE) and electron–longitudinal-
optical-phonon scattering; Blue curves: with all the scatterings, i.e., the electron–electron, electron–longitudinal-optical-phonon and electron–impurity
(EI) scattering. The impurity density Ni = Ne . Note that the scale of the incoherently summed spin coherence is on the right hand side of the figure. From
Cheng and Wu [28].

is the net Dresselhaus effective magnetic field in the spin diffusion. The last term in Eq. (306) is the spin relaxation caused
by the Dresselhaus term together with the spin conserving scattering. The relaxation matrix reads

←→
Γ =


1
τ‖

0 0

0
1
τ‖

0

0 0
1
τ⊥

 , (308)

where 1/τ‖ = α2〈k2τ 1k 〉/2 + 〈(γ k
3)2τ 3k 〉/32 and 1/τ⊥ = 2/τ‖ are the spin relaxation times of in-plane and out-of-plane

components respectively. Similar equations have also been obtained from linear response theory [35,1077]. One can clearly
see the spin precession around thenet effectivemagnetic field h̄ fromEq. (306). In the transient spin transport, the precession
around the effectivemagnetic field results in spin oscillations in both time and space domains evenwhen there is no applied
magnetic field [25,27,28,32,336]. Moreover, due to the precession, the steady-state spin injection is no longer a simple
exponential decay but a damped oscillation [28,32,35,1077].

7.4. Steady-state spin transport in GaAs quantum well

Due to spin oscillation, in the steady state the polarization of injected spin in a GaAs quantumwell is a damped oscillation
∆N(x) ∝ exp(−x/Ld) cos(x/L0 + φ). Here Ld and L0 stand for the diffusion length and the spatial oscillation period,
respectively. How these two parameters change with the scattering mechanism, temperature, applied magnetic or electric
field are important to the realization of spintronic devices.

7.4.1. Effect of the scattering on the spin diffusion
Similar to the spin kinetics in the spatially uniform system, the scattering also affects the spin transport in complicated

ways. On one hand, each scattering mechanism provides an additional channel of spin relaxation/dephasing in the presence
of inhomogeneous broadening. Adding a new scattering mechanism tends to increase spin relaxation/dephasing. However,
scattering also affects the charge and spin transport parameters such as diffusion coefficient andmobility. Electron–impurity
and electron–phonon scattering can directly change the electron momentum and reduce the spin and charge diffusion
coefficients and mobilities. For electron–electron Coulomb scattering, although it does not directly change the charge
diffusion coefficient and mobility, it reduces the spin diffusion coefficient through the inhomogeneous broadening ωk and
the Coulomb drag effect [13–15,27,1092–1100]. All of these effects result in a shorter spin injection length Ld. On the other
hand, the scattering tends to suppress the inhomogeneous broadening in the time domain as well as in space domain. This
helps to prolong the diffusion length Ld. These competing effects on spin diffusion and spin transport were investigated
using the kinetic spin Bloch equation approach [24,25,27,28,32,336]. The main results are reviewed in the following.
In Fig. 117, the spin-resolved electron density Nσ and the incoherently summed spin coherence ρ in the steady state are

plotted against the position x by first including only the electron–longitudinal-optical-phonon scattering (red curves), then



M.W. Wu et al. / Physics Reports 493 (2010) 61–236 201

Fig. 118. Nσ and ρ vs. the position x at T = 120, 200 and 300 K in n-type GaAs (001) quantum well with width a = 7.5 nm and L = 10 µm. Ni = 0. Note
that the scale of the incoherently summed spin coherence is on the right hand side of the figure. From Cheng and Wu [28].

adding the electron–electron scattering (green curves) and finally adding the electron–impurity scattering (blue curves)
with Ni = Ne at T = 120 K (a) and 300 K (b). In the calculation there is no applied magnetic field. One can see that the
scattering affects the transport in a complex way: At T = 120 K, the spin injection length Ld always decreases when a new
scatteringmechanism is added: Ld is significantly reducedwhen the Coulomb scattering is added; adding electron–impurity
scattering further reduces Ld, but only slightly. However, when T = 300 K, Ld becomes slightly shorter when the Coulomb
scattering is first added, but becomes slightly longerwhen electron–impurity scattering is further added. These results show
that for the GaAs quantum well with width a = 7.5 nm, all scattering mechanisms are not strong enough at T = 120 K
and the system falls into the weak scattering limit. The counter effect of the scattering to the inhomogeneous broadening is
weak. Therefore adding a new scattering reduces the injection length. At T = 300 K, the scattering becomes stronger. As a
result the competing effects of the scatterings cancel each other and result in a marginal change in diffusion length when a
new scattering is added.
In Fig. 118, the results of steady-state spin injection at different temperatures are shown. It is seen that the spin injection

length Ld slightly decreases as the temperature rises. The change in Ld is mild due to the cancelation of the opposite effects
in scattering. The spatial period L0 on the other hand systematically increases with the temperature. This is because when
there is only the Dresselhaus term, L−10 ' |〈ωk〉| = |m∗γ (〈k2y〉 − 〈k

2
z 〉)|. In a small quantum well, 〈k

2
z 〉 is larger than 〈k

2
y〉. As

the temperature increases, 〈k2y〉 becomes larger and consequently L0 becomes larger.

7.4.2. Spin transport in the presence of magnetic and electric fields
Themagnetic field effect on the steady-state spin diffusion is shown in Fig. 119, where the spin diffusion length Ld and the

spin oscillation period L0 as functions of the applied magnetic field at T = 120 K are plotted. The direction of the magnetic
field is either vertical (along the y-axis) or parallel (along the x-axis) to the diffusion direction. As themagnetic field increases
the inhomogeneous broadening in spin diffusion, it leads to additional spin relaxation/decoherence and therefore the spin
diffusion length decreaseswith themagnetic field, regardless of the direction of themagnetic field. However, it is interesting
to see that the spin diffusion length has different symmetries when the direction of the magnetic field changes: When B is
parallel to the y-axis, Ld(B) = Ld(−B); however, when B is parallel to the x-axis, Ld(B) 6= Ld(−B). This can be understood
from the fact that the densitymatrices from the kinetic spin Bloch equations have the symmetryρkx,ky,kz(B) = ρkx,−ky,kz (−B)
when B is along the y-axis. This symmetry is broken if B is along the x-axis.
Differing from the magnetic field dependence of the spin diffusion length, the spin oscillation period L0 decreases

monotonically with the vertical magnetic field, regardless of the sign of the field. However L0 increases with the parallel
magnetic field when the field is along the diffusion direction and less than 4 T (the spin precession disappears when the field
is larger than 4 T) but L0 increases with the magnetic field when it is anti-parallel to the diffusion direction. In the presence
of the Dresselhaus term and the applied magnetic field B, the spatial period is determined by m∗γ (〈k2y〉 − 〈k

2
z 〉, 0, 0) +

m∗gµBB〈1/kx〉. 〈1/kx〉 represents the average of 1/kx. Due to the spin transport it does not vanish and can be roughly
estimated by 〈1/kx〉−1 ≈ 〈kx〉 =

∑
k kx∆fk/

∑
k∆fk, which is a positive value for spin transport along the x-direction. For

the vertical magnetic field, the average of the Dresselhaus effective magnetic field and the applied one are perpendicular to
each other, so the magnitude of the spin oscillation period is determined by

[
(m∗gµBB)2/〈kx〉2+m∗2γ 2(〈k2y〉 − 〈k

2
z 〉)
2
]−1/2,

which always decreases with the magnetic field. However, for the parallel field, these two vectors are in the same direction
and the period is determined by |m∗γ (〈k2y〉 − 〈k

2
z 〉)+m

∗gµBB/〈kx〉|−1. These two vectors can enhance or cancel each other
depending on their relative strength and sign. For the particular case in Fig. 119, the the inverse of period L−10 decreases with
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Fig. 119. Inverse of the period of the spin oscillation L−10 (curves with •) and the spin diffusion length Ld (curves with�) for an n-type GaAs (001) quantum
well vs. the external magnetic field Bwhich is applied either vertical (‖ y, dashed curves) or parallel (‖ x, solid curves) to the diffusion direction. T = 120 K
and Ni = 0. The dashed curves are for the vertical magnetic field and the solid curves are for the parallel one. Note that the scale of the diffusion length Ld
is on the right hand side of the figure. From Cheng and Wu [28].

Fig. 120. Spin-resolved electron density Nσ vs. position x at different electric fields E = 0.5, 0, −0.5 and −1 kV/cm and the spin diffusion length Ld for
n-type GaAs (001) quantum well against the electric field E at T = 120 K. Ni = 0. It is noted that although x is plotted up to 10 µm, L = 25 µm when
E = −1.0 and−0.75 kV/cm; 20 µmwhen E = −0.5 and−0.25 kV/cm; 10 µmwhen E = 0; and 5 µmwhen E = 0.5, 0.75 and 1.0 kV/cm. Note that the
scales of the spin diffusion length are on the top and the right hand side of the figure. From Cheng and Wu [28].

the magnetic field, until B ∼ 4 T when |γ (〈k2y〉 − 〈k
2
z 〉)+ gµBB/〈kx〉| ∼ 0. A further increase of the magnetic field does not

lead to clear spin oscillation since the inhomogeneous broadening caused by the magnetic field becomes too large.
The effect of electric field on the spin transport is shown in Fig. 120, where the spin densities in the steady state are

plotted against the position x at different electric fields E = 0.5, 0,−0.5 and−1 kV/cm. In the calculations, the temperature
is 120 K and only the intrinsic scattering mechanisms, i.e. the electron–phonon and electron–electron Coulomb scatterings,
are included. It is seen from the figure that the spin oscillation period almost does not change when the electric field varies
from −1 kV/cm to 0.5 kV/cm. The null effect of the electric field on spatial precession is quite different from the effect
of electric field on the precession in the time domain [569,570]. In the spatially uniform system, due to the drifting of
the electrons driven by the electric field, the Dresselhaus or Rashba term gives an effective magnetic field proportional
to the electric field. This effective magnetic field in turn gives a precession frequency proportional to the electric field
[569,570]. However, in the spin transport, the average of the inhomogeneous broadening 〈ωk〉 = m∗γ (〈k2y〉 − 〈k

2
z 〉, 0, 0)

does not depend on the drifting velocity, and therefore is not affected by the electric field. This is consistentwith the previous
experimental observation in the strained bulk system [567], which is shown in Fig. 121. In the experiment, the oscillation is
induced by the additional spin–orbit coupling caused by the strain. As shown in Eq. (305), the spatial oscillation frequency
[denoted as Γ −1p in Fig. 121(c)] is C3εyx, which is proportional to the strain but does not depend on the drifting velocity or
electric field.
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Fig. 121. Spin transport at F = 40 V/cm and ND = 1.4× 1016 cm−3 in strained bulk GaAs. (a) measured Faraday rotation for drift along [110] and strain
along [110]; (b) calculated spin polarization with the parameters of (a) (using C3 = 5.2 eV Å); (c) Spatial oscillation ‘‘frequency’’ Λ−1p versus strain ε[110] ,
linear fit corresponding to C3 = 8.1 eV Å, and expected result for C3 = 5.2 eV Å (dotted line); (d) measured Faraday rotation for drift and strain along
[100]. From Beck et al. [567].

It is further noted from the figure that the spin diffusion length is markedly affected by the electric field. To reveal this
effect, the spin diffusion length is plotted as function of electric field in the same figure. One finds that when the electric
field varies from −1 kV/cm to +1 kV/cm, the spin diffusion length decreases monotonically, which is consistent with the
prediction of the drift-diffusion model [928,929]. From the inhomogeneous broadening point of view, this can be easily
understood from the fact that when an electric field is applied along the −x-direction (+x-direction), the drift velocity
caused by the electric field is along the x-direction (−x-direction), which enhances (cancels) the velocity driven by the
spin gradient. Therefore, 〈kx〉 is increased (reduced) and the inhomogeneous broadening is decreased (enhanced). A longer
(shorter) spin diffusion length is then observed [28].

7.5. Anisotropy of spin transport in the presence of competing Rashba and Dresselhaus fields

When the Dresselhaus and Rashba terms are both important in the semiconductor quantum well, the total effective
magnetic field can be highly anisotropic and the spin kinetics is also highly anisotropic in regards to the direction of the
spin [194]. For some special polarization direction, the spin relaxation time is extremely large [194,196,203,339,919,920].
For example, if the coefficients of the linear Dresselhaus and Rashba terms are equal to each other in a (001) quantum well
of small well width and the cubic Dresselhaus term is not important, the effective magnetic field is along the [110] direction
for all electrons. For the spin components perpendicular to the [110] direction, this effective magnetic field flips the spin
and leads to a finite spin dephasing time. For a spin along the [110] direction, this effective magnetic field can not flip it.
Therefore, when the spin polarization is along the [110] direction, the Dresselhaus and Rashba terms can not cause any spin
dephasing. When the cubic Dresselhaus term is taken into account, the spin dephasing time for spin polarization along the
[110] direction is finite but still much larger than other directions [597].
The anisotropy in the spin direction is also expected in spin transport. When the Dresselhaus and Rashba terms are

comparable, the spin injection length Ld for the spin polarization perpendicular to the [110] direction is usuallymuch shorter
than that for the spin polarization along the [110] direction. In the ideal case when there are only the linear Dresselhaus
and Rashba terms with identical strengths, the spin injection length for spin polarization parallel to the [110] direction
becomes infinity [196,339,920]. This effect has promoted Schliemann et al. to propose the nonballistic spin-field-effect
transistor [339]. In such a transistor, a gate voltage is used to tune the strength of the Rashba term and therefore control the
spin injection length.
However, spin transport actually involves both the spin polarization and spin transport directions. The latter has long

been overlooked in the literature of spin transport. In the kinetic spin Bloch equation approach, this direction corresponds
to the spatial gradient in the diffusion term (Eq. (157)) and the electric field in the drifting term (Eq. (156)). The importance
of the spin transport direction was not realized until Cheng et al. pointed out that the spin transport is highly anisotropic
not only in the sense of the spin polarization direction but also in the spin transport direction when the Dresselhaus and
Rashba effective magnetic fields are comparable [29]. They even predicted that in a (001) GaAs quantumwell with identical
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Fig. 122. Schematic of the different directions considered for the spin polarizations [110], [1̄10] and [001]-axes and spin diffusion/injection (x-axis). From
Cheng et al. [29].

linear Dresselhaus and Rashba coupling strengths, the spin injection along [1̄10] or [110]94 can be infinite regardless of the
direction of the spin polarization [29]. In the following we review the results on the anisotropic spin transport from the
kinetic spin Bloch equation approach.
The schematic of spin transport in a (001) GaAs quantumwell is shown in Fig. 122. The transport direction is chosen to be

along the x-axis, the angle between the x-axis and the [100] crystal direction is θ . In this coordinate system, the Dresselhaus
effective magnetic field is

hD(k) = β
(
−kx cos 2θ + ky sin 2θ, kx sin 2θ + ky cos 2θ, 0

)
+ γ

(
k2x − k

2
y

2
sin 2θ + kxky cos 2θ

) (
ky, −kx, 0

)
,(309)

while the Rashba field reads

hR(k) = α
(
ky, −kx, 0

)
, (310)

with β = γ 〈k2z 〉. For the special case with α = β , the total magnetic field can be written as

h(k) = 2β
[
sin
(
θ −

π

4

)
kx + cos

(
θ −

π

4

)
ky
]
n̂0 + γ

[
k2x − k

2
y

2
sin 2θ + kxky cos 2θ

] (
ky, −kx, 0

)
, (311)

with the special direction n̂0 =
(
cos(π/4 − θ), sin(π/4 − θ), 0

)
representing the crystal direction [110]. As given by

Eq. (300), the spin precession around the effective fieldmagnetic field is characterized byωk = m∗h(k)/kx for spin transport
along the x-axis.

7.5.1. Spin injection under identical Dresselhaus and Rashba strengths α = β
When α = β ,

ωk = m∗
{
2β
(
sin
(
θ −

π

4

)
+ cos

(
θ −

π

4

) ky
kx

)
n̂0 + γ

(
k2x − k

2
y

2
sin 2θ + kxky cos 2θ

) (
ky/kx, −1, 0

)}
. (312)

It can be split into two parts: the zeroth-order term (on k) which is always along the same direction of n̂0 and the second-
order term which comes from the cubic Dresselhaus term. If the cubic Dresselhaus term is omitted, the effective magnetic
fields for all k states align along the n̂0 (crystal [110]) direction. Therefore, if the spin polarization is along n̂0, there is
no spin relaxation even in the presence of scattering, since there is no spin precession. Nevertheless, it is interesting
to see from Eq. (312) that when θ = 3π/4, i.e., the spin transport is along the [1̄10] direction, ωk = 2m∗βn̂0 is
independent of k if the cubic Dresselhaus term is neglected. Therefore, in this special spin transport direction, there is no
inhomogeneous broadening in the spin transport for any spin polarization. The spin injection length is therefore infinite
regardless of the direction of spin polarization. This result is highly counterintuitive, considering that the spin relaxation
times for the spin components perpendicular to the effective magnetic field are finite in the spatially uniform system. The
surprisingly contradictory results, i.e., the finite spin relaxation/dephasing time versus the infinite spin injection length, are
due to the difference in the inhomogeneous broadening in the spatially uniform and non-uniform systems. In a spatially
uniform system, the inhomogeneous broadening is determined by the D’yakonov–Perel’ term, i.e., h(k) (Eq. (311)), which
is momentum dependent. However in the spin transport problem the inhomogeneous broadening is determined by ωk,
which ismomentum-independentwhen the transport direction is along [1̄10] here. This prediction has not yet been realized
experimentally. However, very recent experimental findings on spin helix [18,20,37,921] have provide strong evidence to
support this prediction.

94
[1̄10] or [110] depends on the relative signs of the Dresselhaus and Rashba coupling strengths.
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Fig. 123. Spin diffusion length Ld (solid curves) and the inverse of the spin oscillation period L−10 (dashed curves) for an n-type GaAs (001) quantum well
with α = β as functions of the injection direction for different spin polarization directions n̂0 , ẑ and n̂1 at T = 200 K. It is noted that the scale of the spin
oscillation period is on the right hand side of the frame. From Cheng et al. [29].

7.5.2. Spin-diffusion/injection-direction and spin-polarization-direction dependence at α = β
When the cubic Dresselhaus term is taken into account, ωk becomes momentum dependent again for all spin transport

directions. This inhomogeneous broadening results in a finite but still highly anisotropic diffusion length for both spin
polarization and spin transport directions. The anisotropy is shown in Fig. 123, where the spin diffusion length Ld and the
inverse of the spin oscillation period L−10 are plotted against the spin diffusion/injection angle θ for spin polarizations along
n̂0, ẑ and n̂1 = ẑ× n̂0 (crystal direction [1̄10]), respectively.
It is seen that the spin injection length becomes finite but independent of the direction of the spin diffusion/injection if

the spin polarization is along [110] (=n̂0). Meanwhile, the spin polarization along this direction has an oscillation period
approaching infinity. This can be understood because the spin polarization is in the same direction as the effective magnetic
field given by the zeroth-order term in ωk and, thus, results in no oscillation. It is noted that the effective magnetic field
from the second-order term of ωk is k-dependent and the average of the second-order term over k states is nearly zero.
Therefore the cubic term does not lead to any oscillation at high temperature due to the scattering [363,368,597]. However,
the inhomogeneous broadening due to the second-order term leads to a finite spin diffusion length. By rewriting the second-
order term of ωk into

m∗γ
2 h̄2
k2 sin(2θk + 2θ)

(
ky/kx, −1, 0) with k and θk denoting the magnitude and the direction of the

wavevector k respectively, one finds that the magnitude of the inhomogeneous broadening does not change with the spin
diffusion/injection direction θ . Consequently the spin diffusion length does not change with the spin diffusion/injection
direction.
When the injected spin momentum is perpendicular to n̂0, L0 and Ld become anisotropic in regard to the spin transport

direction. The spin injection length is small except around θ = 3π/4. L0 and Ld are almost identical for two spin polarization
directions ẑ and n̂1. Because in this case, as γ 〈k2〉 � β , the kinetics of systems are determined by the zeroth order terms of
ωk, which are the same for these twodirections. The oscillation period in the diffusion L0 is determined by thek-independent
component ofωk [29], i.e., 2m∗β sin(θ−π/4)/ h̄2 which is in good agreement with the results shown in Fig. 123. Moreover,
when the injection direction is along [1̄10] (θ = 3π/4), the spin diffusion lengths for all of the three spin polarization
directions are almost identical. The anisotropy in the direction of the spin polarization disappears. This is because when the
spin diffusion/injection direction is θ = 3π/4, the k-dependent component in the zeroth order term of ωk disappears. The
spin injection length is determined by the inhomogeneous broadening in the quadratic terms inωk, which are identical for
any spin polarization direction.

7.5.3. Temperature and electron-density dependence with injection along [1̄10] and α = β
The electron-density and temperature dependences of spin injection along [1̄10] in the caseα = β are shown in Figs. 124

and 125 respectively. It is seen that the diffusion length Ld decreases with electron density and temperature, whereas the
oscillation period L0 increases with them. However, the change observed in the oscillation period is almost negligible (1%)
in contrast to the pronounced changes observed in the diffusion length (more than 40%). This is quite different from the spin
injection in a GaAs quantum well when there is only the Dresselhaus term, where Ld and L0 only change slightly with the
electron density and temperature [25,28].
This is understood by the difference in the behavior of the inhomogeneous broadening ωk. Unlike the case of α = 0,

where the zeroth order term dominates the inhomogeneous broadening, when α = β and θ = 3π/4, the second-order
term alone determines the inhomogeneous broadening. This term increases effectively with the temperature and electron
density due to the increase of the average value of k2. This is the reason for the obtainedmarked decrease of the spin diffusion
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Fig. 124. Spin diffusion length Ld and spin oscillation period L0 at T = 200 K for spin transport in an n-type GaAs (001) quantumwell along the θ = 3π/4
direction as functions of the electron density. Note that the scale of the oscillation period is on the right hand side of the frame. From Cheng et al. [29].

Fig. 125. Spin diffusive length Ld and spin oscillation period L0 in an n-type GaAs (001) quantum well at two different electron densities, 4× 1011 cm−2
and 4× 1010cm−2 vs. the temperature. The spin diffusion/injection direction is θ = 3π/4. Note that the scale of the oscillation period is on the right hand
side of the frame. From Cheng et al. [29].

length. The oscillation period L0 is determined by the k-independent zeroth-order term of ωk, which does not change with
the electron density and the temperature. Therefore one observes only a slight change in the oscillation period, originating
from the second-order term and the scattering.

7.5.4. Gate voltage dependence with injection direction along [1̄10]
Spin transport along [1̄10] under different gate voltages, i.e., different Rashba coupling strengths α since it can be

controlled by the gate voltage, was also studied [29]. It was pointed out that when the cubic Dresselhaus term is present, the
longest spin injection length no longer takes place at α = β [29].95 This can also be understood from the inhomogeneous
broadening. For spin transport along [1̄10]with Dresselhaus and Rashba terms, ωk can be written as

ωk = 2
[(
−β + α +

γ k2

2

)
ky
kx
− γ kxky

]
n̂1 − 2

[
β + α −

γ

2
(k2x − k

2
y)
]
n̂0. (313)

It is seen that the effect of α on the inhomogeneous broadening is determined by the first term. In order to get the longest
spin injection length, α should be tuned to make the first term become minimal. Due to the cubic Dresselhaus term, the
optimized condition is α = β̂ = β − γ 〈k2〉/2 instead of α = β [29,34]. This prediction was later confirmed by experiment
[37].

95 A similar conclusion has also been given by Stanescu and Galitski in Ref. [34].
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7.6. Transient spin grating

The drift-diffusion model tells us that the spin signal exponentially decays with the distance in spin injection and the
injection length Ld is related with the spin diffusion coefficient Ds and spin relaxation time τs by the formula Ld =

√
Dsτs

(Eq. (276)). However, as pointed out by Weng and Wu [336], the drift-diffusion model oversimplifies spin transport in
semiconductors by neglecting the off-diagonal terms of the density matrix. When these terms are included, the spin signal
in the spin injection was shown to be a damped oscillation, characterized by a spin injection length Ld and spatial spin
oscillation period L0, instead of a simple exponential decay [25,28,32]. In the extreme case of spin transport along the [1̄10]-
axis in a (001) GaAs quantumwell under the identical linear Dresselhaus and Rashba spin orbit coupling strengths, the spin
injection length becomes infinite even when the spin diffusion coefficient and the spin relaxation time are finite [29]. This
result is totally beyond the drift-diffusionmodel, as bothDs and τs are finite. Therefore, the relations among the characteristic
parameters given by the drift-diffusion model need modification [29,32,34,35]. Weng et al. presented the correct relations
among the characteristic parameters, which hold even under the extreme case like the case in Section 7.5, by studying the
transient spin grating [32].
The transient spin grating, whose spin polarization varies periodically in real space, is excited optically by two non-

collinear coherent light beams with orthogonal linear polarization [13,33,37,495,661]. The transient spin grating technique
is well suited to study the spin transport since it can directly probe the decay rate of nonuniform spin distributions. The spin
diffusion coefficient Ds can be obtained from transient spin grating experiments [13,33,495,661]. In the literature, the drift-
diffusion model was employed to extract Ds from the experimental data. With the drift-diffusion model, the transient spin
grating was predicted to decay exponentially with time with a decay rate of Γq = Dsq2+ 1/τs, where q is the wavevector of
the spin grating [13,495]. However, this result is not accurate since it neglects the spin precession, which plays an important
role in spin transport. Indeed, experimental results show that the decay of a transient spin grating takes a double-exponential
form instead of a single exponential one [13,33,37]. Therefore, it isworth studying the transient spin grating using the kinetic
spin Bloch equation approach.

7.6.1. Simplified solution for the transient spin grating
The transient spin grating can be qualitatively understood in a simplified case where an analytical solution can be

obtained. By neglecting the Hartree–Fock term, inelastic scattering such as the electron–phonon and the electron–electron
Coulomb scatterings and the coupling to the Poisson equation, in the diffusive limit, one is able to write the kinetic spin
Bloch equations as Eq. (306), with h̄ and

←→
Γ being

h̄ = 〈k2τ 1k /m〉(−β̂ cos 2θ, β̂ sin 2θ − α, 0), (314)

and

←→
Γ =

1
2


(α2 + β̂2 − 2αβ̂ sin 2θ)〈k2τ 1k 〉

+〈(γ k3)2τ 3k 〉/16
2αβ̂〈k2τ 1k 〉 cos 2θ 0

2αβ̂〈k2τ 1k 〉 cos 2θ
(α2 + β̂2 + 2αβ̂ sin 2θ)〈k2τ 1k 〉

+〈(γ k3)2τ 3k 〉/16
0

0 0 2(α2 + β̂2)〈k2τ 1k 〉
+〈(γ k3)2τ 3k 〉/8

 (315)

for the systemwith both the Dresselhaus and Rashba terms. One can obtain the analytical solution of the above kinetic spin
Bloch equations for the transient spin grating as the following [32]

Sz(q, t) = Sz(q, 0)(λ+e−t/τ+ + λ−e−t/τ−), (316)

with relaxation rates

Γ± =
1
τ±
= Dq2 +

1
2

(
1
τs1
+
1
τs

)
±
1
2τs2

√
1+

16Dq2τ 2s2
τ ′s1

, (317)

in which

λ± =
1
2

1± 1√
1+ 16Dq2τ 2s2/τ

′

s1

 . (318)

Here τs1 (τs2) is the spin relaxation time of the in-plane spin which mixes (does not mix) with the out-of-plane spin due to
the net effectivemagnetic field. For spin injection/diffusion along the [110] axis, τs1 = 〈(α− β̂)2k2τ 1k 〉/2+γ

2
〈k6τ 3k 〉/32 and

τ ′s1 = 〈(α− β̂)
2k2τ 1k 〉/2. For spin injection/diffusion along the [1̄10] axis, τs1 = 〈(α+ β̂)

2k2τ 1k 〉/2+ γ
2
〈k6τ 3k 〉/32 and τ

′

s1 =

〈(α+ β̂)2k2τ 1k 〉/2. In the long wavelength limit (q� 1), Γ+ ' 1/τs+ (1+4τs2/τ
′

s1)Dq
2 and Γ− ' 1/τs1+ (1−4τs2/τ ′s1)Dq

2
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become quadratic functions of q, roughly corresponding to the out-of-plane and the in-plane relaxation rates respectively.
In the general case both of these two decay rates (Eq. (317)) are not simple quadratic functions of q. If one uses the quadratic
fitting to yield the spin diffusion coefficient, one gets a value that is either larger (for Γ+) or smaller (for Γ−) than the true
one. The accurate way to get the information of spin diffusion coefficient should be from the average of these two rates

Γ = (Γ+ + Γ−)/2 = Dq2 + 1/τ ′s (319)

with 1/τ ′s = (1/τs + 1/τs1)/2, which differs from the current widely used formula by replacing the spin decay rate by
the average of the in- and out-of-plane relaxation rates. The difference of these two decay rates is a linear function of the
wavevector qwhen q is relatively large:

∆Γ = cq+ d. (320)

For the simplified solution c = 2
√
Ds/τ ′s1 and d is a value close to zero.

The steady-state spin injection can be extracted from the transient spin grating signal by integrating the transient spin
grating signal equation (316) over the time from 0 to∞ and the wave-vector from−∞ to∞. From the simplified solution
(Eqs. (316), (319) and (320)), the integrated transient spin grating reads Sz(x) = Sz(0)e−x/Ls cos(x/L0 + ψ)with

Ls = 2Ds/
√
|c2 − 4Ds(1/τ ′s − d)|, (321)

L0 = 2Ds/c. (322)

It is noted that if one only considers the Rashba term or the linear Dresselhaus term one can recover the result Ls = 2
√
Dsτs

from linear response theory [35]. It is seen that the spin precession actually prolongs the out-of-plane spin injection length
by mixing the fast decaying out-of-plane spin with the slow decaying in-plane spin. Eqs. (321) and (322) give the right
spin injection length and the spin oscillation period in the presence of the spin–orbit coupling. From the experimental
point of view, one can monitor the time evolutions of a transient spin grating with different wavevectors q and obtain the
corresponding decay rates Γ±. By fitting Γ± with Eqs. (319) and (320), one can then calculate the spin injection length and
spin oscillation period accurately from Eqs. (321) and (322), instead of using the inaccurate formula from the drift-diffusion
model. Weng et al. demonstrated that the relations defined by Eqs. (321) and (322) are true even in the extreme case when
the drift-diffusion model totally fails [32].

7.6.2. Kinetic spin Bloch equation solution for transient spin grating
The spin diffusion coefficient together with the equations (321) and (322) obtained by the above simplified kinetic spin

Bloch equations are derived with only the elastic scattering approximation. It does not take into account the inelastic
electron–phonon and electron–electron Coulomb scattering. Therefore the diffusion coefficient obtained from Eq. (319)
does not include the contribution of the spin Coulomb drag. Moreover, this approach oversimplifies the complex effect
of the scattering on the spin transport. Whether these relations remain valid in the genuine situation still remains to be
checked. To answer this,Weng et al. numerically solved the full kinetic spin Bloch equationswith all the scatterings explicitly
included [32]. Their numerical results showed that all of the important qualitative results presented in Section 7.6.1 are still
valid. In particular, the temporal evolution of the transient spin gratingwith all the scatterings included still shows a double-
exponential decay, which agreeswith the experimental result [13,33,37] but is contrary to the result from the drift-diffusion
model. Moreover the two decay rates can still be fitted with Eqs. (319) and (320) pretty well [32]. The fitting is shown in
Fig. 126, where the relaxation rates Γ± = 1/τ±, their average Γ and difference ∆Γ of a typical transient spin grating are
plotted as functions of q. The numerical results suggested that the two decay rates Γ± = 1/τ± are not quadratic functions of
q, but their average decay rateΓ is. Using a quadratic function to fit the decay ratesΓ±(q), one gets a poor result. In contrast,
the average decay rate Γ is fitted pretty well by a quadratic function Γ = Dsq2 + 1/τ ′s . The residual error of the quadratic
fitting forΓ is two orders of magnitude smaller than those ofΓ±. Moreover, forΓ the constant term τ ′s is very close to 4τs/3,
the inverse of the average of the in-plane and out-of-plane spin relaxation rates. Inspired by Eq. (319), the coefficient of the
quadratic term Ds can be reasonably assumed to be the spin diffusion coefficient. In this way one can calculate the spin
diffusion coefficient with the effect of spin Coulomb drag included. For ∆Γ , it can be accurately fitted by a linear function
of q. It is therefore concluded that even with all the scatterings included, one can still extract the spin diffusion coefficient
Ds and obtain the injection length and oscillation period from the transient spin grating experiments using Eqs. (321) and
(322).
From Eqs. (319) and (320) one can see that τ+ decreases monotonically as q increases, while τ− has a peak at some

wavevector q0. Earlier theoretical works, which only considered the linear Dresselhaus term, predicted that the ratio of
these two relaxation times τ−/τ+ and the position of the peak q0 do not vary with temperature [18,35]. However, Weng
et al. showed that once the cubic Dresselhaus term is included, both τ−/τ+ and q0 depend on temperature. With the
cubic Dresselhaus term, the peak position q0 moves from q0 =

√
15m∗β/2 (which is independent of temperature) to

q0 =
√
15m∗β̂/2 =

√
15m∗(β−γ k2/2)/2. Since 〈k2〉 increases with increasing temperature, thus q0 decreases with it. The

temperature dependence of τ+/τ− also originates from the contribution of the cubic Dresselhaus term. These theoretical
results qualitatively agree with experiment ones [33]. In additional to the correct qualitative agreement between the
theoretical and experimental results, the quantitative accuracy of results from the kinetic spin Bloch equation approach is
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Fig. 126. Γ = (Γ+ + Γ−)/2 and∆Γ = (Γ+ − Γ−)/2 vs. q at T = 295 K in an n-type GaAs (001) quantum well. Open boxes/triangles are the relaxation
rates Γ+/− calculated from the full kinetic spin Bloch equations. Filled/open circles represent Γ and∆Γ respectively. Note that the scale for∆Γ is on the
right hand side of the frame. The solid curves are the fitting to Γ and∆Γ respectively. The dashed curves are guides to the eyes. FromWeng et al. [32].

(a)

(b)

Fig. 127. Spin relaxation times τ± vs. temperature in an n-type GaAs (001) quantum well for (a) high-mobility sample with q = 0.58× 104 cm−1 and (b)
low-mobility sample with q = 0.69× 104 cm−1 . The dots are the experiment data from Ref. [33]. FromWeng et al. [32].

Jspin

Jspin

Jn

Fig. 128. A representation of electron–electron Coulomb scattering that does not conserve spin-current. Before the collision the spin-current, Jspin , is
positive; after, it is negative. The charge current, Jc , does not change. Colors correspond to spin states. FromWeber et al. [13].

also good. The results are shown in Fig. 127, in which spin relaxation times are plotted as function of temperature together
with the experimental data from Ref. [33]. In the calculation the finite square well assumption [372] was used, and all the
parameters were chosen to be the experimental values if available. The only adjustable parameters were the spin–orbit
coupling coefficients γ and α. In the calculation, γ was chosen to be 11.4 eV Å3 and 13.8 eV Å3 for the high (Fig. 127(a)) and
lowmobility (Fig. 127(b)) samples respectively and α was set to be 0.3β , close to the choice in the experimental work [33].

7.6.3. Spin Coulomb drag
From the evolution of the transient spin grating one canobserve theCoulombdrag effect on the spin diffusiondirectly. The

effect of electron–electron Coulomb scattering on the spin diffusion coefficient is illustrated in Fig. 128. For spin–unpolarized
charge diffusion, the electrons move along the same direction and the Coulomb scattering does not change the center-of-
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Fig. 129. Diffusion coefficient as a function of temperature in an n-type GaAs (001) quantum well. Solid circles: Spin diffusion constant Ds with Coulomb
drag; Open circles: Charge diffusion constant Dc . FromWeng et al. [32].

mass motion, therefore it does not change the charge diffusion coefficient directly. However, for the spin transport, spin-up
and -down electrons move against each other. Therefore the Coulomb scattering between them slows down the relative
motion of these two spin species and thus reduces the spin diffusion coefficient. This is the so-called spin drag or spin
Coulomb drag effect [13–15,27,1092–1100], which was first proposed by D’Amico and Vignale [14,15,1093–1097].
In Fig. 129 the spin diffusion coefficient calculated in the above mentioned method as a function of temperature was

presented. For comparison, the charge diffusion coefficient, which is calculated by solving the kinetic spin Bloch equations
with the initial condition being the charge gradient instead of the spin gradient, is also included. It is clearly seen from the
figure that Ds < Dc .
From the figure one can tell that in the relatively high temperature regime, as the temperature increases, the spin and

charge diffusion coefficients and their difference all decrease. Therefore the Coulombdrag is stronger in the low temperature
regime. However, even at room temperature the Coulomb drag is still strong enough to reduce the diffusion coefficient by
30%. These results quantitatively agreewith those of Refs. [1093,1094]. It should be pointed out that the reduction of the spin
diffusion coefficient mostly comes from the Coulomb drag. The spin–orbit coupling only has a small effect on the diffusion
coefficient since the spin–orbit coupling is very small compared to the Fermi energy. The numerical result shows that the
removal of the spin–orbit coupling only changes the spin diffusion coefficient by 0.1 percent for the system studied, which
is consistent with the result from the linear response theory [1098].
Phenomenologically, the spin Coulomb drag modifies Ohm’s law as Eη =

∑
η′ ρηη′ jη′ , in which Eη is the ‘‘electric’’ field

on electrons with spin η. The field also includes the contribution from the gradient of the local chemical potential, which
can be spin dependent. The off-diagonal terms of the resistivity ρ↑↓ correspond to the spin drag resistivity, defined by
ρ↑↓ = E↑/j↓ when j↑ = 0. Using the generalized Einstein relations with the spin Coulomb drag effect taken into account,
the spin diffusion coefficient reads [13–15,1093]

Ds
Dc
=
χ0

χs

1
1+ |ρ↑↓|/ρ

, (323)

where Dc and ρ are the charge diffusion coefficient and mobility, respectively and χ0/χs is the many-body enhancement of
spin susceptibility of the electron gas. At normal electron density and temperature, χ0/χs is close to 1 [13,848,1101,1102].
The spin drag resistivity can be calculated from linear response theory. In two dimensions, it takes the form of [14,15,1093,
1100]:

ρ↑↓ =
−1

2e2n↑n↓kBT

∫
d2q
(2π)2

q2
∫
∞

0

dω
2π
|V↑↓(q, ω)|2

ImΠ0↑(q, ω)ImΠ0↓(q, ω)
sinh2(ω/2T )

, (324)

in which V↑↓(q, ω) is the dynamically screened effective Coulomb interaction between spin ↑ and ↓ electrons. Π0η is the
non-interacting spin-resolved polarization function. Spin–orbit coupling is shown to have a small enhancement to spin drag
resistivity [1098]. ρ↑↓ increases with temperature as (T/TF )2 in the low temperature regime (T � TF ) but decreases with
temperature as 1/T in the high temperature regime (T � TF ) [1092,1094]. The quantitative comparison of ρ↑↓ between
theoretical calculation and experiment results is shown in Fig. 130. With the modification of finite quantumwell width and
local field correlations, ρ↑↓ calculated from Eq. (324) is in good agreementwith the experiment data extracted fromRef. [13]
using Eq. (323) [1100].
Jiang et al. showed that the spin Coulomb drag also plays an important role in the transient spin transport [27]. In Fig. 131,

the spatial profiles of the spin imbalance at different times are plotted for a Gaussian spin pulse with different scattering. It
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Fig. 130. Spin drag resistivity ρ↑↓ as a function of temperature for an n-type GaAs (001) quantumwell with the electron density n = 4.3×1011 cm−2 . The
dashed and dotted curves correspond to ρ↑↓ , calculated within the random phase approximation for quantum well width a = 0 and 12 nm, respectively.
The solid curve corresponds to ρ↑↓ , calculated beyond the random phase approximation for a = 12 nm. The symbols represent ρ↑↓ , deduced from the
experimental data for a = 12 nm of Ref. [13]. From Badalyan et al. [1100].

Fig. 131. The absolute values of the spin imbalance |∆Nσ | vs. the position x at certain times t in an n-type GaAs (001) quantum well for the cases with
only the electron–phonon scattering (orange); the electron–phonon and electron–electron scattering (blue); and the electron–phonon, electron–electron
and electron–impurity scattering (green). The red curve shows the initial spin pulse. ∆Nσ (0) = 1011 cm−2 , δx = 0.1 µm and Ni = 0.5Ne . Solid curves:
∆N > 0; Dashed curves:∆N < 0. From Jiang et al. [27].

is clearly seen that when the Coulomb scattering is included, both the diffusion of the spin pulse and the decay of the spin
polarization at the center of the pulse become much slower. When there is only electron–phonon scattering, a third peak
in∆Nσ appears after about 15 picoseconds diffusion. The Coulomb scattering delays the appearance of the third peak to 35
picoseconds. Moreover, since the Coulomb scattering reduces the spin dephasing, the magnitudes of the spin polarization
and the peaks with the Coulomb scattering are higher than those without.

7.6.4. Infinite spin injection length in Section 7.5 revisited from the point of view of a transient spin grating
For most of the cases, Ls determined by Eq. (321) is on the same order as

√
Dsτs, although the former is usually

larger. However, there are some special cases, say the denominator in Eq. (321) approaches zero, where Ls can be orders
of magnitude larger than

√
Dsτs. Specifically, according to Cheng et al. [29], reviewed in Section 7.5, when the spin

injection/transport direction is along [1̄10] in a (001) quantum well, Ls becomes larger and larger as α approaches β ,
regardless of the direction of spin polarization. In the limit of α = β , the spin injection length tends to infinity when
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Fig. 132. (a) Transient spin grating decay curves at various wavevectors, q, for an asymmetrically doped GaAs quantumwell with a mixture of Rashba and
Dresselhaus spin–orbit couplings. (b) Lifetimes for the spin–orbit-enhanced (τE , corresponding to τ− in Eq. (317)) and -reduced (τR , corresponding to τ+ in
Eq. (317)) helix modes extracted from double-exponential fits to the data in (a). The solid lines are a theoretical fit (see text) using a single set of spin–orbit
parameters for both helix modes. Error bars (s.d.) are the size of the data points. (c) Illustration of a helical spin wave, which is one of the normal modes.
In this picture, z is the growth direction [001], and the axes x′ and y′ respectively refer to the [110] and [11̄0] directions in the plane of the quantum well.
The green spheres represent electrons whose spin directions are given by the arrows. From Koralek et al. [37].

the cubic Dresselhaus term is ignored and the spin polarization oscillates with a spatial period of 2π/(2m∗β) without any
decay [29].
The non-decay spin oscillation model can also be understood from the point of view of a transient spin grating. From

the simplified solution in Section 7.6.1, one obtains that the fitting parameters for∆Γ are d→ 0 and c → 2
√
Ds/τ ′s when

α → β in the system without the cubic Dresselhaus term. Consequently τ± = (
√
Dq ± 1/

√
τs)
−2 when α = β . It is then

straightforward to see that τ− becomes infinite provided q = q0 = 1/
√
Dτs = 2m∗β . Therefore the steady-state spin

injection along [1̄10] axis is dominated by this non-decay transient spin grating mode, which is responsible for the infinite
spin injection length and the spatial oscillation period 2π/q0 = 2π/(2m∗β) [32].

7.6.5. Persistent spin helix state
The spin transport model with infinite spin injection length in the Section 7.5.1 [29], or the non-decay transient spin

grating with wavevector q0 = (q0, 0, 0) in the previous subsection [32], is related to the persistent spin helix, which was
first proposed by Bernevig et al. [18,20,37,921]. The persistent spin helix has an SU(2) symmetry which is robust against
spin-conserving scattering. The SU(2) symmetry of the persistent spin helix is generated by the following operators [18]:

S−q0 =
∑
k
cĎk;−ck+q0;+, S+q0 =

∑
k
cĎk+q0;+ck;−, Sz0 =

∑
k
(cĎk;+ck;+ − c

Ď
k;−ck;−). (325)

Here cĎk;λ (ck;λ) is the creation (annihilation) operator of an electron with momentum k and spin λ. λ = ± are the index of
spin eigenstates with spin–orbit coupling. It is noted that nonzero 〈Sz0〉 corresponds to a spin polarization along the [110]
direction. While nonzero 〈S±q0〉 corresponds to a spin grating with wave-vector q0. The spin profile of nonzero 〈S

±
q0〉 in the

real space is a helical wave. The out-of-plane mode of the spin helix is illustrated in Fig. 132(c).
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Fig. 133. (a, c), Lifetimes of the enhanced helix mode are shown for GaAs quantumwells with varying degrees of doping asymmetry (a) andwell width (c).
The normalized asymmetry is the difference between the concentrations of dopants on either side of thewell, divided by the total dopant concentration. (b,
d), Plots summarizing the spin–orbit parameters from these fits in (a) and (c). In this figure, the spin–orbit coupling strengths are expressed as dimensionless
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text, respectively. From Koralek et al. [37].

The generating operators of the persistent spin helix obey the commutation relations for angular momentum,

[Sz0, S
±

q0 ] = ±2S
±

q0 , [S+q0 , S
−

q0 ] = S
z
0. (326)

Moreover, since |k;+〉 and |k+ q0;−〉 are degenerate, these operators also commute with the electron Hamiltonian. This
symmetry is robust against spin conserving scattering, such as electron–impurity, electron–phonon and electron–electron
Coulomb scatterings, since these three operators also commute with the finite wave-vector particle densities ρq =∑

σ c
Ď
k+qσ ckσ , which are the components that appear in the scattering Hamiltonian. This SU(2) symmetry means that the

lifetime of the expectation values of Sz0, S
±
q0 are infinite, and hence the transient spin grating with q0 does not decay with

time even when there is spin conserving scattering. In spin transport, this corresponds to the infinite spin injection length
proposed by Cheng et al. [20,29,32].When the cubic Dresselhaus term is present, the SU(2) symmetry is broken, the lifetimes
of the spin helix become finite, which corresponds to the finite spin injection length in the presence of the cubic Dresselhaus
term [20,29,32].
Recently, Koralek et al. have observed the emergence of the persistent spin helix experimentally in asymmetrically

modulation-doped GaAs quantum wells, where both the Dresselhaus and Rashba spin–orbit couplings are important, by
using transient spin-grating spectroscopy [37]. Their results are shown in Figs. 132 and 133. The experimental results clearly
show that the transient spin grating signal is in a double exponential decay form and can be fitted by two lifetimes, τE
and τR (corresponding to τ− and τ+ in the previous subsections). For some special wavevectors, τE is much larger than
τR when the Dresselhaus and the Rashba terms are comparable. All of these experimental results are consistent with the
theoretical ones [32,33]. By constructing a series of quantumwells with differentwell widths (to tune the linear Dresselhaus
spin–orbit coupling) and doping asymmetries (to change the Rashba spin–orbit coupling), Koralek et al. demonstrated how
the lifetimes of the spin helix depend on the Dresselhaus and Rashba terms as well as temperature. They found that the
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optimized condition to observe the peak spin helix lifetime is α = β̂ = β − γ k2/2 instead of α = β due to the existence of
the cubic Dresselhaus term. This finding is consistent with previous theoretical predictions [29,32,34].

8. Summary

The main concern of this review was to give an overview of the latest developments of the spin dynamics of
semiconductors. We focused on two main issues: (i) spin relaxation and dephasing and (ii) spin diffusion and transport.
We reviewed both experimental and theoretical progress in these two directions. In the theoretical part, besides the results
based on the single-particle approach, we reviewed our systematic investigation based on the fully microscopic many-body
kinetic spin Bloch equation approach. Many novel effects predicted by this approach have been realized experimentally.
Also many widely adopted common beliefs based on the single-particle theory in the literature were shown to be incorrect.
We provided a comprehensive understanding of the spin dynamics of semiconductors and their confined structures from a
fully microscopic many-body point of view.

Note added in proof

After the completion of this review, we became aware of recent advances from Jansen group demonstrating some nice
properties of electric spin injection in silicon [1103,1104].
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