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Abstract. A consistent Schwinger-boson mean field theo-
rv is developed for a spin-3 2D antiferromagnet. It pre-
dicts that there are two branches of the Schwinger-boson
excitation spectrum: an acoustic branch. essentially the
same as that predicted by Arovas and Auerbach theory.
and a new optical branch. The present theory provides a
natural explanation of the mystery of the Raman “two
magon” scattering from La,CuQ,.

PACS: 74.70.Vy; 78.30—j; 75.10Jm

In the past six years, intensive investigation on the mag-
netic properties of La,CuQO, (and other parent com-
pounds of the High T, cuprates) have been made with
the aim to understand the mystery of the high T, cuprate
(1. 2]. Thermal neutron scattering on La,CuQ, [3] shows
that it is a quasi two-dimensional (2.D) spin-} antiferrom-
agntism with spin wave as its low energy excitation. con-
sistent with the conventional spin wave theory (cSWT)
[4]. The peculiarty of spin-} antiferromagneusm lies in
that there are also experiments such as the “two-magnon™
Raman scattering from La,CuQO, [5-7] which cannot be
explained by the theory based on the cSWT. in spite of
such theory is fitted very well with that from S>1 an-
tiferromagnetic materials [8, 9]. This failure probably
hints that the cSWT does not represent the whole story
for spin-32D antiferromagnet. In the present letter, we
reexamine the Schwinger-boson mean-field theory of an-
tiferromagnetism and show that there is a new branch of
boson excitation missed in the cSWT.

Arovas and Auerbach (AA) [10] first developed a
Schwinger boson theory of the SU(N) generalizaiion of
the Heisenberg model. They formulated their theory in
the functional form. And in the saddle point approxi-
mation they have studied the thermodynamic and dy-
namic properties of the low dimensional ferromagnet and
antiferromagnet in the low temperature and disordered
regime. Sarker et al. [11] showed later that the results of
AA can be obtained easily by a mean field decomposition
of the Heisenberg Hamiltonian into a quadraiic form.
They argued that the magnetic ordering is identified with
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the Bose condensation of the Schwinger bosons. and ex-
tended AA theory to cover the magnetic long range order
regime. In their mean field decomposition thev only con-
sider the anomalous contractions of the Schwinger bo-
sons (b"b"» and (bb). Yoshioka showed in the paper
[12] that the inclusion of the normal contractions leads
only to an unimportant renormalization of the parame-
ters in the theory. However, it is in general not true. In
a consistent mean field theory, the normal contractions
also play an important role.

Consider a spin-} Heisenberg antiferromagnet on a
square lattice. Following the work of Sarker et al. [11],
we start our study from the Hamiltonian

H={NJ~4J 3 Y b}, bbb,
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The first three terms are just the Heisenberg Hamiltonian
J 3" S;-S,. The last term is introduced to impose the
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constraint condition Z b =] on the average. u is the
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Lagrange multiplier. Remember that in deriving (1) we
have divided the square lattice into two sublattices 4 and
B, and used the Schwinger boson representation of the
spin operators: S:=4(b}b,—b}b,), S =b}b, and
S”=b}b, for site (/) on the sublattice A4, and S;=

~3(bj+ b, yb;,), S7=—b],b, and S; b},b
for site ( J) on B. In the mean field approxunauon
Hamiltonian (1) is reduced in the k-space to the form
(13]
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in which A=u—J,C=~NA+NJQ*+NJ 3 p}p,

and y,=3(cosk,a+cosk,a). N is the number of the
lattice sites. The prime on the summation means that the
sum of k runs over the first magnetic Brillouin zone. The
last term of (2) is arisen from the anomalous mean field
decomposition of the 4-boson terms in the Hamiltonian
(1), and the order parameter Q is defined by O=
3" {biy bi+ 9o With 7j =&, 9. Differing from Sarker et al.,

we also take the normal mean field decompositions into
account. One of these is just that has been considered in
the work of Yoshioka. It is the Hartree term decomposed
from the second term of (1). This term together with the
last one of (1) gives the second term of the mean field
Hamiltonian (2) (and also the constant $ NJ — Nu). There
also exists another Hartree term. decomposed from the
third term of (1) which reads

_%‘I Z Z‘(b;abj—a>bi‘:abi—a
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Transforming these terms into the k-space, one obtains
the third term of (2) (and a constant —2NJp3p,), in

2 .
N Z BAbA > and pr=

In the paper [12],
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the Hartree term (3) is thrown away from beginning.
This however is inconsistent as the values of <6}, b,_,>
and ¢b],b,_,> predicted by the theory are finite in the
magnetic long range order regime. So it is important to
include (3) in the Hamiltonian (2) in order to formulate
a consistent mean field theory.

We know that the rotational invariant property of the
Hamiltonian is not broken as the spin operators are rep-
resented by Schwinger bosons. The long range magnetic
ordering is identified with the Bose condensation of the
Schwinger bosons and the magnetic moment is ordered
in the direction transverse to the --axis [11]. In other
words, in the magnetic ordering regime, {S,” > (and also
{87 >,48; ) and (S ;) is finite and so the order pa-
rameter p, (and p}) docs not equal to zero. There is no
difficulty to prove that p, can be expressed in terms of
the magnetization p (in unit of gu,) and the angle ¢.
specified the direction of the sublattice magnetization,
through the relation p,=pe'“®. Here =1 (—1) for
S7=1(-1). Let us go back to (3) and re-express it in
terms of the spm operator, we see that the Hartree po-
tential 2Jp, is nothing but the Weiss molecular field. So
in our mean field Hamiltonian (2), there exist a term
characterizing the antiferromagnetic correlation, and also
a term characterizing the nearest neighborhood interac-
tion (Weiss molecular field).

In the disordered regime. only short range order exists.
The direction of the local magnetic moment varies with
the lattice site. Its average should be zero. So in the
disordered regime, p,=0. In this case. our mean field
Hamiltonian (2) reduces to that of Sarker et al. {11] ex-
cept that the lagrange multiplier 4 in the later is replaced

by its renormalized value 4 =x —J. We conclude that
when T > 0K, AA theory of the 2D antiferromagnet is
hold even when the normal contractions of the Schwinger
boson is considered in the theory.

When 7T=0 K. the situation is quite different. In this
case the magnetic moment appears long-range order, and
so p, +0. Without losing generality, we choose ¢ = 0. It
means that we choose the direction of the magnetization
of sublattice A as the x-axis. By the well known procedure
[14, 11}, we obtain the following consistent equations for
the parameters Q and p, and also the constraint condition
imposed by the Lagrange multiplier:

_my 1% % dk.dk,

p-ﬁ 4 2 _j" (27!)2 (fk gk (4)
2n, V%% dk.dk,

0=ty § § Ga rithtso. (5)
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where n =2JQ/(A+2Jp), =1/ 1~n?*y} and g, =
1/)/1—yi. Solving these equations numerically, we ob-
tain p =0.4773. n,/N=0.3903, 0=1.2108, 1 =3.3763J
and n =0.5592. It is to be noted that the sublattice mag-
netization p is somewhat larger than the accepted value
0.3034 predicated by AA and also the cSWT.

By diagonizing the Hamiltonian (2), we find that there
are two branches of the Schwinger-boson excitation spec-
trum
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Fig. 1. The Schwinger-boson excitation spectrum along the [1.1}
direction in the k-space. Solid-line: our theory: Dashed line: AA
theory



Fig. 2. Raman “two-magnon” spectrum of La.CuO,.
The circles are experimental datz taken from [77 and the
solid line is computed from (9) by choosing p =0.3034,
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The values of p. A and n are listed below (6). The origin
of splitting the degenerate AA excitation spectrums into
an acoustic branch and an optical one lies in the presence
of the Hartree potential 2Jp. The optical branch w, (k)
is larger than zero throughout the Brillouin zone. Whereas
the acoustic one w , (k) has two zeros at k=0 and n. At
such points. the bose condensation occurs. The first term
on the right hand side of (4)-(6) are just from the con-
densation. The spectrum (7) and (8) along the [1,1] di-
rection are plotted in Fig. 1. For comparison, the Schwin-
ger excitation spectrum predicted by AA is also shown
in the same figure by the dashed line. It shows that the
acoustic branch of the excitation spectrum w , (k) is es-
sentially the same as that of AA. Whereas the optical
branch is the new result outside the AA theory. As shown
in the figure there is an energy gap between the two
branches of the excitation spectrum. We expect that the
values of the parameters such as p. n etc. may suffer
more or less modifications if we go beyond the mean field
theory and (or) impose strict local constraint condition
2 b, b,=1 instead of the average. For example, the

value of the sublattice magnetization p should be reduced
from 0.4773 to 0.3034. And so the energy gap

2JQ(/1/n°—1—1) may go out of existence, and even
the two excitation branches may overlap in some energy
ranges. But we believe that the theoretical prediction
about the Schwinger boson excitation spectrum still holds
Qualitatively.

The present theory provides a natural explanation of
the mystery of the Raman “two magnon” scattering from
La,CuO,. Using Green function technique [15] to revise
the theory presented in the papers [8.9]. we obtain the
following formula for the Raman scattering intensity:
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Q0=1.24, n=0.85,J=103.6 meV and I'=0.1

in which
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I' is the damping of the boson excitation and &=
w /(2JQ). It is inadequate to compare this theoretical
formula directly with the experiment using the mean
field value of the parameters 5, Q and I" for the reasons
mentioned above. Before we have a more satisfactory
theory, we compare it with the experiment in an empirical
way. In Fig. 2, the colid line is computed from (9) by
choosing p=0.3034. @=1.24, n=0.85, J=103.6 meV
and I"=0.1, and the experimental data are taken from
Figs. 4-9 of paper [7]. Our theoretical curve shows a
long tail and pronounced asymmetry in the shape, es-
pecially there is a shoulder located at the same position
as the expenment. These interesting features are easily
understood if one interprets the Raman spectra roughly
as a superposition of two peaks associated with the two
branches of the boson excitation separately. As shown in
the figure, the agreement between the theory and the
experiment is fairly well. This success encourages us to
carry out further investigation on the theory of the boson
excitation of 2D antiferromagnet, and the possibility to
explain other optical excitation experiments [16). This is
currently under investigation and the results together with
the details of the Raman scattering theory will be pub-
lished elsewhere.
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